
www.pnas.org/cgi/doi/10.1073/pnas. 116

Saunders et al. 1 
 

SI Appendix – Saunders et al. 

 

Monarch population biology 

The eastern North American monarch butterfly population extends from the east coast of the 

United States to the Rocky Mountains during summer breeding, and overwinters in dense 

colonies in forests on a limited number of mountain peaks at the boundary of the Mexican states 

of Michoacán and México (1). Each spring (February and March), individuals fly from Mexico 

into Texas and surrounding areas where they lay eggs on milkweed (2, 3). Adult butterflies 

resulting from those eggs fly to northern breeding grounds throughout the central and eastern 

U.S. and southern Canada, arriving in May and June, and reproduce. An additional two to three 

generations are produced throughout the summer with the bulk of recruitment occurring in the 

Midwestern U.S. (4, 5). Individuals in the final generation migrate back to Mexico after entering 

reproductive diapause by late August. 

 

Winter monarch data collection and covariate data 

Winter monarch data collection.—To collect individual winter colony size data, a team of 

experienced individuals from the National Commission on Protected Areas (CONANP) of the 

Secretariat of the Environment and Natural Resources (SEMARNAT) and the World Wide Fund 

for Nature (WWF), accompanied by at least one local forest owner, visit all sites annually. 

Throughout the main text, we refer to a colony as aggregations of clustering butterflies relatively 

close to each other that exhibit a clear preference for a particular area of forest over time (6). 

Estimating the number of butterflies within colonies is virtually impossible due to the compact 

nature of their clusters and the complex architecture of the tree branches where they congregate. 

 NABA counts. – The North American Butterfly Association (NABA) compiles butterfly 

counts from citizen scientists through the Seasonal Count Program at approximately 450 

established count circle locations (7, 8). Each point count location consists of a circle with a 

diameter of 25 km. One to several people survey the circle during a given day and report all 

individuals of all butterfly species observed. Effort is accounted for by multiplying the amount of 

time spent by the number of parties (groups of individuals) that searched during the survey 

(party-hours). We calculated the average number of monarchs per party-hour for all collection 

efforts conducted in the Midwestern United States (above 40° latitude band) during the period 

from 19 July – 15 August, which we used as a proxy for annual peak summer abundance (NABAt 

subscripted to indicate year t) during 2004 – 2015.  

 Journey North roosts. – Journey North citizen science participants report observations of 

nocturnal roosts, which monarchs form during their autumn migrations (9, 10). All reported roost 

observations are verified by Journey North staff and archived in an online database. Journey 

North sightings begin around 15 Aug and continue until 31 Oct each year across the United 

States and Mexico. We used an annual index of the number of reported autumn roosts from 2004 

– 2015 (Roostst) and included only those roosts found in the central monarch flyway (i.e. 

Midwest migratory corridor; ref. 9, 11), since monarchs from Atlantic coastal locations 

constitute only a small fraction (approx. 23%; ref. 5) of the wintering cohort in Mexico (7, 12). 

We excluded roosts reported to be ≤ 50 butterflies (8% of sightings) because small roosts are 

over-reported under the current protocols (11). Additionally, we omitted repeat observations of 

the same roost by the same individual (i.e. only the first observation of a roost was used). These 

criteria (including omitting roosts found within states bordering the Atlantic coast) resulted in a 

total of 993 roost observations over 12 years. Because of a high correlation between NABAt and 
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Roostst (r = 0.58), we independently tested their effects and retained the most strongly supported 

index (i.e. models with lowest Deviance Information Criterion [DIC]; see below) in subsequent 

models (13).  

Autumn climate—We defined two annual temperature variables (average temperature and 

minimum temperature) at distinct spatiotemporal scales along the autumn migratory route. The 

time periods and regions of interest were determined via timing and location of sightings by 

citizen scientists over the 12-year period (10), as well as by monarch phenology (14). We 

restricted our calculation of autumn environmental variables (climate, NDVI) to within the 

central flyway (Fig. 2 in main text) because the majority of monarchs in the overwintering 

grounds likely use this region during migration. A smaller fraction of monarchs originating in the 

northeast use an eastern corridor to migrate, but they constitute less than a quarter of the 

overwintering population (5, 9). First, we acquired daily minimum and average temperatures 

throughout the first half of the migration route (Region 1) between 100°W, 40°N and 90°W, 

30°N (Fig. 2 in main text) during 15 Sept – 15 Oct from Daymet (daymet.ornl.gov), which 

interpolates data from weather stations to produce spatially gridded estimates of daily weather 

(15). Second, we acquired daily minimum and average temperatures throughout the second half 

of the migration route (Region 2) between 100°W, 30°N and 95°W, 20°N (Fig. 2 in main text) 

during 15 Oct – 15 Nov. For both measures, we used daily minimum and average temperatures 

in a grid of points separated by 1 degree across the specified region, and averaged the values 

across each region to yield a single mean temperature (avgTemp.R1t, avgTemp.R2t) and 

minimum temperature (minTemp.R1t, minTemp.R2t) for each year t in each region (R1 and R2). 

Because regional values were highly correlated (r = 0.86 for min temp; 0.88 for mean temp), we 

independently tested the effects of the two temperature covariates for each region and retained 

the regional pair of covariates that was most strongly supported in subsequent models. 

 Normalized Difference Vegetation Index. – To assess the influence of nectar availability 

along the migration route on arrival abundances at the wintering grounds (and hence the ability 

to build up lipid reserves for successful migration; ref. 16), we used the Normalized Difference 

Vegetation Index (NDVI; lta.cr.usgs.gov/noaa_cdr_ndvi), which quantifies the density of green 

vegetation by calculating the visible and near-infrared light reflected by vegetation. Most of the 

energy (i.e. lipids) that adult butterflies use to fuel their activity is obtained from flower nectar 

(17, 18). Monarchs arrive at Mexican wintering sites with high lipid levels, suggesting that they 

accumulate lipid reserves in the southern U.S. and northern Mexico (14). NDVI is commonly 

used as an indicator of drought, primary biomass production, and herbivore resource availability 

on large spatial scales (19-21). Bottom-up effects resulting from drought can greatly reduce 

Lepidoptera resource availability (22, 23), and the relationship between plants and available 

moisture has been identified as a primary driver of population dynamics for a number of 

herbivorous insects (24-26). 

In this study, we use the NDVI greenness index as a proxy for vegetation 

productivity/phenology (i.e. nectar resource availability), as has been done in several prior 

studies which assess NDVI associations with the distribution, abundance, and migratory 

condition of nectar-reliant organisms. For example, NDVI has been used as a proxy for: resource 

availability for butterflies (23); nectar flow for honeybees (27); vegetation heterogeneity in 

resources for butterfly species (19); and resource availability for migrating hummingbirds (28). 

NDVI has also been correlated with mosquito abundance (for those species that feed on nectar; 

29) and giant honeybee abundance (16). Further, a recent study demonstrated a link between 

remotely-sensed productivity (EVI, enhanced vegetation index) and nectar abundance using 
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ground-truthed data from flowers (30). Taken together, these studies indicate that NDVI can 

accurately represent broad-scale nectar availability in the context of our analyses. 

We defined NDVI at the same two spatiotemporal scales as the temperature covariates 

(NDVI.R1t, NDVI.R2t). We averaged these data across the two regions (Fig. 2 in main text) at 

monthly timescales during the autumns of 2004 – 2015. Because of a high correlation between 

regions (r = 0.80), we tested their effects individually and retained the most strongly supported 

covariate of the two measures. NDVI data were collected from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) Aqua (Instrument: MOD13Q1)/ Terra (Instrument: MYD13Q1 

product) satellite at a 250 m spatial and 8-day temporal resolution.  

OE parasitism rate—Monarchs infected by the protozoan parasite Ophryocystis 

elektroscirrha have reduced survival, flight speed, and flight endurance (31). The prevalence of 

infection in the population accumulates over the course of the breeding season such that 

monarchs of the final generation that are infected by OE are less likely to complete the autumn 

migration (32, 33). We included the annual proportion of the eastern migratory population (i.e. 

during the autumn migratory/early wintering period) infected with OE (OEInfectt) from 2004 – 

2014 (32, 34) with an imputed missing value for 2015 (using the mean value from 2004 – 2014; 

35) because data were not available for that year (34). 

 Forest habitat availability.— To identify changes in forest area and condition between 

2004 and 2015, we used a map series (36-38) generated for a long-term land cover monitoring 

project of the Monarch Butterfly Biosphere Reserve and its surrounding area (286,993 ha). We 

used maps which show land cover for the years of 2003, 2006, 2009, and 2012 generated at a 

1:40,000 scale. To update the map series for 2015, we used Landsat ETM+ images 27/46-47 

(glovis.usgs.gov), SPOT images (ERMEX-SPOT), and high resolution GeoEye images (Google 

Earth Pro). On-screen visual interpretation and map analysis were carried out using ArcGIS 9.0. 

We extracted polygons of dense forest (canopy cover > 70%, indicative of well-preserved 

forests) and open forest (canopy cover 40 – 70%) from the available land cover maps. We 

defined two covariates related to forest habitat availability at each of j individual colonies: the 

amounts of (1) dense forest cover (DForestj,t) and (2) dense + open forest cover (DOForestj,t) at 

individual colony sites. Dense forest cover provides the optimal microclimate for wintering 

monarchs, whereas open forest cover represents habitat that is usable but sub-optimal. Each 

covariate was measured in hectares and calculated annually around individual colony sites within 

a 100 ha critical area (i.e. historical perching area, 1994 – 2015) with an additional 500 m out 

from the perimeter of the critical area (i.e. adjacent areas where monarchs fly in search of water). 

The 500 m buffer distance was selected based on the average proximity of the critical areas to 

water, as well as the maximum distance monarchs typically travel from roost edges. To best 

capture microclimate conditions, critical area ellipses were oriented downhill and accounted for 

both the microbasin and the known ravine each colony used for movement. 

Colony locations are not random over time; rather, monarchs tend to congregate in the 

same general areas year after year, which are represented by the critical area designations. All 

ellipses were the same area but differed in shape (Fig. 2 in main text) depending on the spatial 

distribution of colony location points (39, 40). Because the shape of critical area ellipses varied, 

the size of the buffer areas also varied depending on the area/perimeter ratio (Fig. 2 in main text), 

thus accounting for the total potential habitat used by monarchs at each site. Two colony sites (El 

Calabozo Fracción and Sierra Chincua State) shared an ellipse due to close geographical 

proximity. Land cover data were not available in every year of the study period, so we used 

linear extrapolation between available years to obtain missing estimates. Because of a high 
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correlation (r = 0.85) between DForestj,t and DOForestj,t, we independently tested their effects 

and retained the most strongly supported forest cover covariate in subsequent models. 

Previous year dynamics—In addition to wintering habitat availability, we considered two 

autoregressive covariates in our models: (i) presence/absence of individuals at a colony site 

(ColPresj,t-1) in the previous year (evaluated on the first part of the two-part model; see modeling 

details below), and (ii) colony size (ColSizej,t-1) at each site in the previous year (tested on the 

second part of the two-part model). We incorporated these variables to test for a potential 

spatiotemporal effect between colony occurrence and monarch abundances from year to year. 

Colony presence within/outside of Monarch Butterfly Biosphere Reserve—We included a 

site-specific categorical variable indicating whether the colony was located within (Reservej = 1, 

n = 14 sites) or outside (Reservej = 0, n = 5 sites) of the Monarch Butterfly Biosphere Reserve. 

The reserve is known to hold the largest aggregations of monarchs, and therefore the majority 

(~70%) of the wintering population (39, 40). 

 

Rationale for use of gamma zero-altered hurdle model 

Two-part (or ‘zero-altered hurdle’) models applied to ecological and biological questions are 

useful when observational data show overdispersion and excessive zero values (41-45; Fig. S4). 

These models are referred to as ‘hurdle’ models because, regardless of the mechanisms causing 

an increase in the response variable, a hurdle must first be crossed before the data are observed 

(46, 47). Ecologically, it is relevant to consider these two processes separately because predictors 

that determine the presence-absence of colonies can be different from those describing 

abundance (conditional on presence). Statistically, ignoring the large number of non-detections 

(i.e. areas occupied < 0.01 ha) is problematic as it could result in exaggerated estimates of 

variance and biased estimates of parameters and standard errors (48, 49).  

We chose a zero-altered model, as opposed to a zero-inflated mixture model, to deal with 

the high number of zeros in the data because we were interested in the probability of not 

measuring any detectable colony/area occupied versus measuring any size colony/area occupied 

(i.e. probability of occurrence). In contrast, the aim of zero-inflated mixture models is to 

discriminate between false and true zeros (i.e. count process allows for zeros). When modeling 

continuous data that has too many zeros, a distribution with inflated error is needed. However, 

the gamma distribution, which accurately captures the long tail in the colony size data, does not 

allow for zero values, so modeling the zeros separately from the non-zeros in a binomial-gamma 

hurdle model is recommended (41, 42). To account for pseudoreplication of sites, as well as any 

unaccounted for site-specific variation, we included colony site as a random effect on both parts 

of the hurdle model (46). 

We estimated parameter values for all models using a Bayesian approach with JAGS (50) 

called from program R (R package jagsUI; 51) using flat normal priors on all of the parameter 

values (see below for model code). We ran three chains for 150,000 iterations after a burn-in of 

100,000 iterations and adaptation phase of 5,000 iterations, and thinned the chains by five. 

Model convergence was assessed with the Rhat statistic (52) and visual inspection of chains. 

 

Additional details on model selection procedure and results 

We started our analyses with 14 environmental variables described in Table S1. Given the high 

correlation in many variables (see covariate descriptions), we used a forward selection approach 

to model fitting. In the first step, we evaluated support for univariate models using the Deviance 

Information Criterion (DIC). While DIC has limitations, model selection and parameter 
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estimation with DIC have been effectively applied in hierarchical analyses and demonstrated to 

be useful for inference (53, 54). To the null model (which included random site effects), we 

added each of the covariates individually and discarded any uninformative covariates that led to 

increased DIC values after each step. If multiple covariates yielded a reduction in DIC compared 

to the null model, the model with the lowest DIC was used as a base model for considering 

additional covariates. If two or more covariates were selected, we also considered biologically 

reasonable interaction terms (i.e. within the same spatial scale; see below). When additional 

covariates no longer led to a reduction in DIC, the best-supported model from the previous step 

was retained as the top-supported model. 

Of the 14 covariates (i.e. univariate models) tested, the following eight covariates 

lowered DIC as compared to the null model: peak summer abundance index (NABAt), autumn 

migratory roost index (Roostst), greenness in Region 1 (see Fig. 2 in main text) during the first 

half of migration (NDVI.R1t), greenness in Region 2 (see Fig. 2 in main text) during the second 

half of migration (NDVI.R2t), whether the colony was located within the Monarch Butterfly 

Biosphere Reserve (Reservej), average autumn temperature in Region 1 during the first half of 

migration (avgTemp.R1t), dense forest cover surrounding colony locations (DForestj,t), and dense 

+ open forest cover surrounding colony locations (DOForestj,t).  

Given that NDVI.R1t and NDVI.R2t were highly correlated with each other (r = 0.80), we 

retained NDVI.R1t in all subsequent models because it led to a greater reduction in DIC (ΔDIC = 

8.1). However, support for both greenness indices (proxy for nectar availability) indicate an 

association between nectar availability throughout the migration route with arrival abundances 

on overwintering grounds. Similarly, DForestj,t and DOForestj,t were strongly correlated (r = 

0.85); DForestj,t led to a greater reduction in DIC (ΔDIC = 6.3) so was retained in all subsequent 

models. Stronger support for DForestj,t over DOForestj,t in our models reinforces previous 

evidence that forest thinning should be prevented within and adjacent to overwintering sites to 

minimize exposure of butterflies to inclement conditions that increase winter mortality. Finally, 

NABAt and Roostst were both supported yet were correlated (r = 0.58); NABAt was retained in 

subsequent models given that it led to a greater reduction in DIC (ΔDIC = 13.2). Support for 

both summer/autumn indices provides further evidence of a link in population dynamics across 

the autumn period, although the weaker support for Roostst over NABAt suggests that our roost 

index does not fully capture the autumn migratory population (i.e. the index may be too coarse).  

We carried the five remaining supported covariates forward in selection of multivariate 

models (ensuring that correlated predictors were not included in a model simultaneously) and 

tested two-way interaction terms between covariates within the same spatial scale that were 

included in the same model. Thus, we tested the following interactions: DForestj,t × Reservej, 

NABAt × NDVI.R1t, NABAt × avgTemp.R1t, and NDVI.R1t × avgTemp.R1t. Inclusion of these 

interaction terms did not yield models with lower DIC values, so interactions were not included 

in subsequent models. The ten most strongly supported models are provided in Table S2; note 

that the top model, which included only main effects of NABAt, NDVI.R1t, Reservej, and 

DForestj,, clearly provides the best fit to the data (with ∆DIC = 4.5 for the second ranked model). 

 

Results on colony occurrence probabilities  

The probability of annual monarch colony occurrence at each of the 19 overwintering sites 

ranged between 0.15 and 0.91 on average (Table S3). Mean probabilities of colony occurrence 

were highest at El Rosario, San Antonio Albarranes, and San Mateo Almomoloa (Table S3). 
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Mean colony sizes, conditional on occurrence, ranged between 0.01 and 1.25 ha for average 

covariate values, with the largest expected colony sizes at El Rosario (see Fig. 1 in main text). 

 

Models fit with additional years of data at the aggregate colony level 

To ensure that our estimated relationships with autumn temporal covariates in our top-supported 

model (i.e. NDVI, dense forest cover, NABA counts) were not a product of beginning our 

analysis in 2004, we fit a gamma mixed model using the aggregated colony sizes (i.e. total 

overwintering abundance) during 2000 (the first year NDVI data are available) to 2015 as a 

function of annual measures of NDVI, total dense forest cover (summed across all colony sites), 

NABA counts, and a random effect of year (to account for possible dependence due to temporal 

autocorrelation). Fig. S2 illustrates the estimated relationships between each variable and total 

overwintering population size – all of which follow the same trend as that of our colony-level 

analysis beginning in 2004. Parameter estimates for each covariate were in the same direction, 

albeit the effect sizes were smaller and 95% credible intervals overlapped zero (see Table S4 

below). We fit the same aggregate model starting with data from 2004 to demonstrate that these 

species-environment relationships exist at both fine and broad spatial scales (Table S4). 

 

Comparison of linear trends and total variation in residuals among models 

We calculated residuals to evaluate model fit and to examine any trends in the residuals. 

Comparison of trends in the residuals (via post-hoc Bayesian linear regression with year as the 

explanatory variable) allowed us to assess how well our models fit over time. Comparison of 

variation (standard deviation [SD]) in residuals among models allowed us to assess the amount 

of variation explained by the predictors in each model. Greater variation in the residuals during a 

given time period (i.e. higher SD) represents greater variability in the response (i.e. more 

remaining unexplained temporal variation), indicating that the predictors in the model poorly 

explain fluctuations in colony sizes. If the residuals are minimally variable (i.e. lower SD), the 

predictors account for more of the temporal variation in colony sizes. For example, there is a 

much greater spread (i.e. higher SD) of residual values in the bottom row of Fig. S3 versus the 

top row.  

We fit models using aggregate colony data starting in 2000 (the first year NDVI data are 

available) and 2004 (timeframe of colony-level analysis). We included the top-supported 

temporal covariates from our colony-level analysis in these models (peak summer index, 

greenness index in region 1, dense forest cover summed across colonies, and a random effect of 

year). Posterior means of residuals from these two models exhibited slight declines over time 

(top row of Fig. S3), whereas mean residuals from a model fit with only peak summer index 

(since 2000 and 2004) exhibited statistically significant negative trends (bottom row of Fig. S3). 

In comparison, mean residuals from our colony-level top model do not show a significant trend 

over time (Fig. S1), demonstrating adequate fit with the fine-scale model throughout the 

timeframe of our analysis.  

Although our colony-level model underestimated certain colony sizes (i.e. the 

consistently large colonies) early in the time series, our fine-scale model has the lowest variation 

(SD range: 0.03 – 0.57) of mean residual values compared to the aggregate models. Note that we 

compare the mean and range of the 19 colony-specific SDs from our colony-level model (Fig. 

S1) with the SDs from the aggregate models for a more equivalent comparison than simply the 

SD of all 228 mean residual values. These results suggest that (i) summing colony-level data 

masks important local-scale variation and (ii) accounting for spatial heterogeneity of individual 
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colony sizes is key to explaining temporal variation in monarch abundances. Importantly, failure 

to consider effects of both autumn greenness (i.e. proxy for broad-scale nectar availability) and 

dense forest cover on winter population sizes results in significantly more unexplained temporal 

variation in residuals compared to summer-only models. 
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R/JAGS code for the most strongly supported hierarchical gamma hurdle 

model 

#---------------------------------------------------------------------

# Hierarchical zero-altered gamma hurdle model for estimating  

# overwintering monarch butterfly colony sizes at 19 sites in central 

# Mexico during December 2004 – 2015. 

# Author of code: Sarah Saunders (2017 - 2018) 

#--------------------------------------------------------------------- 

sink("fall_model_best") 

cat(" 

model{ 

 

# Priors 

a1  ~ dnorm(0,0.01) 

a2  ~ dnorm(0,0.01) 

a3  ~ dnorm(0,0.01) 

a4  ~ dnorm(0,0.01) 

a5  ~ dnorm(0,0.01) 

 

tau.a8 <- pow(sigma.a8, -2) 

sigma.a8 ~ dunif(0, 10000) 

tau.a9 <- pow(sigma.a9, -2) 

sigma.a9 ~ dunif(0, 10000) 

 

g0 ~ dnorm(0, 0.01) 

sd ~ dgamma(2,2) 

 

# For the ones trick 

C <- 100000 

 

for (j in 1:usite){ 

    # Random effect of site on both model parts 

    a8[j] ~ dnorm(0, tau.a8) 

    a9[j] ~ dnorm(0, tau.a9) 

 

for (t in 1:uyear){ 

    # Define logistic regression model, w is probability of occurrence 

    # Use the logistic transformation exp(z)/(1 + exp(z)) 

    logit(w[j,t]) <- zeta[j,t] 

    zeta[j,t] <- g0 + a9[j] 

 

    # Define gamma regression model for the mean using inverse link 

    mu[j,t] <- pow(eta[j,t], -1) 

    eta[j,t] <- a1 + a2*naba.st[t] + a3*nectar.st1[t] + 

a4*forestd.st[j,t] + a5*reserve[j] + a8[j] 

 

    # Redefine mu & sd of continuous part into shape & rate parameters 

    shape[j,t] <- pow(mu[j,t], 2) / pow(sd, 2) 

    rate[j,t] <- mu[j,t] / pow(sd, 2) 

 

    # For readability, define log-likelihood of gamma 

    logGamma[j,t] <- log(dgamma(y[j,t], shape[j,t], rate[j,t])) 
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    # Define total likelihood, where likelihood is (1 - w) if y < 

    # 0.0001 (z = 0) or likelihood is w * gammalik if y >= 0.0001 (z = 

    # 1). So if z = 1, then first part must be 0 and second part must 

    # be 1. Use 1 - z, which is 0 if y > 0.0001 and 1 if y < 0.0001.  

    # Z matrix is data and consists of dummy variable of 0s where y > 

    # 0.0001 and 1s where y > 0.0001. 

 

    logLik[j,t] <- (1 - z[j,t])*log(1 - w[j,t]) + z[j,t]*(log(w[j,t]) 

+ logGamma[j,t]) 

 

    Lik[j,t] <- exp(logLik[j,t]) 

 

    # Use the ones trick (matrix of ones fed in as data) 

    p[j,t] <- Lik[j,t] / C 

    ones[j,t] ~ dbern(p[j,t]) 

  } 

 } 

} 

sink() 

 

## PREP JAGSUI DATA ## 

bugsdata <- list(uyear=length(uyear), usite=length(usite), 

y=data.matrix(fallmonarchs), z=data.matrix(non_zero),ones=ones, 

naba.st=naba.st, nectar.st1=nectar.st1, reserve=reserve, 

forestd.st=forestd.st)  

 

inits <- function(){ 

list(a1=runif(1,1,10),a2=rnorm(1),a3=rnorm(1),a4=rnorm(1),a5=rnorm(1), 

g0=rnorm(1)) 

} 

 

parameters<-c('a1', 'a2', 'a3', 'a4', 'a5', 'g0', 'sigma.a8', 

'sigma.a9', 'w') 

 

## RUN BUGS MODEL IN JAGSUI ## 

fall.model.best <- jags(data = bugsdata, inits = inits, 

parameters.to.save = parameters, model.file = 'fall_model_best.txt', 

n.chains = 3, n.adapt = 5000, n.iter = 150000, n.burnin = 100000, 

n.thin = 5, parallel = TRUE, store.data = TRUE) 
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Table S1. Continental- and local-scale environmental variables evaluated in our models. 

 

Covariate category 
Covariate 

abbreviation 
Description 

Continental-scale   

Monarch population size NABAt North American Butterfly Association index 

of monarch counts from 19 July – 15 Aug in 

Midwestern U.S. [peak summer population] 

 Roostst Journey North index of roosts migrating 

through central flyway from 15 Aug – 31 

Oct [autumn migratory population] 

Autumn climate avgTemp.R1t Daily mean temperatures averaged in Region 

1 (Fig. 2) during 15 Sept – 15 Oct [first half 

of migration] 

 avgTemp.R2t Daily mean temperatures averaged in Region 

2 (Fig. 2) during 15 Oct – 15 Nov [second 

half of migration] 

 minTemp.R1t Daily minimum temperatures averaged in 

Region 1 (Fig. 2) during 15 Sept – 15 Oct 

 minTemp.R2t Daily minimum temperatures averaged in 

Region 2 (Fig. 2) during 15 Oct – 15 Nov 

Greenness index NDVI.R1t NDVI measured in Region 1 (Fig. 2) during 

15 Sept – 15 Oct [proxy of nectar 

availability] 

 NDVI.R2t NDVI measured in Region 2 (Fig. 2) during 

15 Oct – 15 Nov 

Parasitism OEInfectt Proportion of larvae infected with protozoan 

parasite Ophryocystis elektroscirrha 

Local-scale    

Previous year dynamics ColPresj,t-1 Presence/absence of a colony at each site in 

previous year 

 ColSizej,t-1 Size of a colony at each site in previous year 

Forest habitat availability DForestj,t Amount of dense forest (> 70% canopy 

cover) surrounding each colony, measured 

within 100 ha ellipse + 500 m buffer 

 DOForestj,t Amount of dense + open forest (40 – 70% 

cover) surrounding each colony, measured 

within 100 ha ellipse + 500 m buffer 

Reserve location Reservej Indicator of whether a colony was located 

within (1) or outside of (0) the Monarch 

Butterfly Biosphere Reserve 

Subscripts t and j refer to year and colony site, respectively; covariate abbreviations in main text.  
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Table S2. The ten most strongly supported models of winter monarch butterfly colony sizes at 

all known sites in central Mexico during December 2004 – 2015. The null model is also shown. 

 

Model DIC ∆DIC 
Number of 

parameters 

NABAt + NDVI.R1t + DForestj,t + Reservej 5457.8 0.0 6 

NABAt + NDVI.R1t + DForestj,t 5462.3 4.5 5 

NABAt + NDVI.R1t + Reservej 5462.8 5.0 5 

NABAt + NDVI.R1t 5464.1 6.3 4 

NABAt + DForestj,t 5467.4 9.6 4 

NABAt + NDVI.R1t + avgTemp.R1t 5467.5 9.7 5 

NABAt + Reservej 5467.9 10.1 4 

NABAt + NDVI.R1t + DForestj,t + avgTemp.R1t 5468.1 10.3 6 

NABAt 5468.4 10.6 3 

NABAt + avgTemp.R1t 5472.1 14.3 4 

Null model 5500.8 43.0 2 

Models were ranked according to differences in the Deviance Information Criterion (∆DIC). All 

covariates shown were included on the gamma submodel only. Models also included an intercept 

term and colony site as a random effect on each part of the hurdle model (i.e. logistic and gamma 

submodels). See Table S1 for covariate descriptions. 
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Table S3. Parameter estimates from the most strongly supported model estimating winter 

monarch butterfly colony size at all 19 sites in central Mexico during 2004 – 2015. 

 

Parameter Mean 95% CI 85% CI 50% CI 

NABA [gamma submodel] -0.423 -0.690, -0.217 -0.607, -0.263 -0.498, -0.339 

NDVI [gamma] -0.351 -0.647, -0.056 -0.563, -0.138 -0.448, -0.252 

Dense forest [gamma] -0.530 -1.332, 0.145 -1.087, -0.028 -0.757, -0.277 

Reserve [gamma] -1.389 -2.772, -0.084 -2.388, -0.402 -1.827, -0.938 

Intercept [gamma] 4.389 3.221, 5.780 - - 

Random site effect SD [gamma] 0.938 0.527, 1.578 - - 

Intercept [logistic submodel] 0.108 -0.757, 1.044 - - 

Random site effect SD [logistic] 1.701 0.984, 2.810 - - 

w E. Contepec 0.217 0.051, 0.456 - - 

w IC Carpinteros 0.647 0.386, 0.866 - - 

w Sierra Chincua Fed 0.287 0.091, 0.540 - - 

w Sierra Chincua State 0.358 0.137, 0.618 - - 

w E. Cerro Prieto 0.502 0.251, 0.751 - - 

w El Calabozo Fracción 0.218 0.052, 0.461 - - 

w IC Crescencio Morales 0.288 0.091, 0.542 - - 

w E. Nicolás Romero 0.358 0.138, 0.619 - - 

w E. El Rosario 0.914 0.729, 0.996 - - 

w E. La Mesa 0.429 0.191, 0.687 - - 

w E. San Juan Xoconusco 0.359 0.137, 0.619 - - 

w El Capulín 0.575 0.319, 0.812 - - 

w Mesas Altas de Xoconusco 0.151 0.022, 0.372 - - 

w IC San Pablo Malacatepec 0.358 0.136, 0.615 - - 

w PP San Andrés 0.647 0.385, 0.867 - - 

w Río de Parras 0.647 0.387, 0.866 - - 

w San Francisco Oxtotilpan 0.718 0.465, 0.913 - - 

w San Antonio Albarranes 0.913 0.729, 0.996 - - 

w San Mateo Almomoloa 0.913 0.728, 0.996 - - 

The 95% credible intervals (CI) for all parameters are shown; 85% and 50% CIs for covariate 

effects on gamma submodel also shown for reference. NABA = NABAt, NDVI = NDVI.R1t, 

Dense forest = DForestj,t, Reserve = Reservej, wj = probability of colony occupancy at each site j 

(estimated from logistic submodel), SD = standard deviation; see Table S1 for covariate 

descriptions. Negative mean values indicate a positive effect due to the use of an inverse-log link 

function for the gamma distribution abundance submodel (i.e. all four covariates in the top-

supported model had a positive association with winter colony sizes). 
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Table S4. Parameter estimates from the most strongly supported model (with random year 

effect) fit using total winter monarch butterfly colony sizes annually (i.e. aggregated colony-level 

data) in central Mexico during 2000 – 2015 and 2004 – 2015.  

 

Parameter Mean 95% CI 85% CI 

2000 – 2015    

NABA -0.075 -0.181, 0.004 -0.145, -0.017 

NDVI -0.086 -0.225, 0.015 -0.173, -0.010 

Dense forest -0.119 -0.227, -0.036 -0.191, -0.057 

Intercept 0.321 0.240, 0.431 0.258, 0.394 

Random year effect SD 0.107 0.030, 0.224 0.046, 0.181 

2004 – 2015    

NABA -0.174 -0.322, -0.070 -0.270, -0.095 

NDVI -0.180 -0.439, 0.054 -0.359, -0.006 

Dense forest -0.215 -0.556, 0.066 -0.437, -0.021 

Intercept 0.381 0.197, 0.609 0.250, 0.522 

Random year effect SD 0.091 0.007, 0.282 0.019, 0.203 

The 95% and 85% credible intervals (CI) for all parameters are shown. Negative mean values 

indicate a positive effect due to the use of an inverse-log link function (i.e. all three covariates 

had a positive association with total winter population size). SD = standard deviation. 
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Figure S1. Posterior means (from 30,000 MCMC simulations) of estimated residuals from our 

top-supported hierarchical gamma hurdle model using colony-level size data (from all 19 known 

winter colonies) during 2004 – 2015 as a function of peak summer index (NABA counts), 

autumn greenness in region 1 (NDVI), dense forest cover surrounding colony locations, whether 

a colony was located inside/outside of the reserve, and random site effects on both parts of the 

hurdle model. The linear trend (solid line) and associated 95% credible interval (shading) are 

shown. Text indicates linear equation (for a post-hoc Bayesian regression), R2 (amount of 

variance explained by year), 95% credible interval of slope, and standard deviation (SD, mean 

and range) of residual values. 

 

 

 

 

 

y = -0.01x + 0.06, R² = 0.03 
95% CI of slope: -0.02 – 0.005  

Mean SD of colony residuals = 0.19 
SD range: 0.03 – 0.57 
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Figure S2. Covariate effects of (A) NDVI during the first half of autumn migration, (B) NABA 

counts (peak summer index), and (C) dense forest cover (ha; summed across colonies) on total 

overwintering colony size during 2000 – 2015, as estimated using a model with aggregated 

winter colony data. Solid lines show the marginal effect (with 95% credible intervals shaded) 

when all other covariates are held at their mean values. 
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Figure S3. Estimated residuals (posterior means from 30,000 MCMC simulations) from gamma 

mixed models fit using aggregate colony data during 2000 – 2015 (A & C) and 2004 – 2015 (B & 

D). In A & B, models included peak summer index (NABA counts), autumn greenness in region 

1 (NDVI), total dense forest cover surrounding colony locations (summed across colonies), and a 

random effect of year. In C & D, models included only peak summer index (NABA counts) and 

a random effect of year. The linear trend (solid line) and associated 95% credible interval 

(shading) are shown for post-hoc Bayesian regressions of the residuals. Text indicates linear 

equation, R2 (amount of variance explained by year), 95% credible interval of slope, and 

standard deviation (SD) of residual values. 

y = -0.07x + 0.75, R² = 0.26 
95% CI of slope: -0.14 – -0.003 
SD of residuals = 0.70  

y = -0.06x + 0.53, R² = 0.15 
95% CI of slope: -0.16 – 0.004 
SD of residuals = 0.60  

y = -0.22x + 2.13, R² = 0.53 
95% CI of slope: -0.33 – -0.11 
SD of residuals = 1.46 

y = -0.17x + 1.05, R² = 0.48 
95% CI of slope: -0.29 – -0.06 
SD of residuals = 0.95 
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Figure S4. Histograms of monarch butterfly wintering colony sizes (hectares). (A) Annual 

observations across all 19 colony sites during December 2004 – 2015, excluding zero values (i.e. 

≥ 0.01 ha; n = 114 or 50% of site-years). (B) Total annual observations, including zeros (n = 

228). Color coding represents the colony site and matches that of Fig. 1 in main text. E. El 

Rosario, San Antonio Albarranes, and San Mateo Almomoloa had a colony detected every year 

during the study period. 
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