
Supplementary Figures 

 

Figure S1. Number of total forecast submissions on a log scale per model throughout the 

Challenge period. The number of forecasts varied greatly between models.  
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Figure S2. Count of forecasts for each submission date. In general, submissions increased 

throughout the Challenge until mid-May.  

 

 

Figure S3. The forecasts of greenness (GCC) that were submitted on 28 April 2021 for the next 

35 days at the eight sites. For site descriptions and name abbreviations see Table 1.  
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Figure S4. Examples of how teams’ forecasts of greenness (GCC) change as transition dates 

(15% and 85% greenup in left and right columns, respectively) approach and lead time decreases 

for Lyndon B. Johnson National Grassland on the top row and Bartlett Experimental Forest on 

the bottom row. (a) forecasts for Lyndon B. Johnson on 3 April 2021, (b) forecasts for Lyndon 

B. Johnson on 21 April 2021, (c) forecasts for Bartlett on 11 May 2021, and (d) forecasts for 

Bartlett on 18 May 2021. Some models’ forecasts approached the observed GCC as lead time 

decreased and some did not.  
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Figure S5. Examples of how the Continuous Ranked Probability Scores (CRPS) of teams’ 

forecasts change as transition dates (15% and 85% greenup in left and right columns, 

respectively) approach and lead time decreases for Lyndon B. Johnson National Grassland on the 

top row and Bartlett Experimental Forest on the bottom row. (a) forecasts for Lyndon B. Johnson 

on 3 April 2021, (b) forecasts for Lyndon B. Johnson on 21 April 2021, (c) forecasts for Bartlett 

on 11 May 2021, and (d) forecasts for Bartlett on 18 May 2021. Forecast predictive skill (lower 

CRPS) was higher for Lyndon B. Johnson than for Bartlett.  
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Figure S6. Forecast horizon, or number of days before the transition dates that each forecast 

model did better at forecasting greenness (GCC) than day of year mean model across the range of 

all sites based on Continuous Ranked Probability Score values for the dates of 15% (a) and 85% 

(b) greenup. In each panel, the models are ordered by decreasing average forecast horizon. 

Empty rows indicate that the team did not forecast GCC on the relevant dates for any sites. On 

average, PEG and GPEDM models forecasted GCC on the 15% and 85% transition dates, 

respectively, better than the day of year mean model the furthest in advance.  
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Figure S7: Generalized Additive Model fixed effects for each model x site combination. 

Nonsignificant interaction effects are indicated using transparency. 
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Figure S8. The number of days anomaly in the 2021 calculated dates of 15%, 50%, and 85% 

greenup compared to the average in the available historical PhenoCam data for each site. 

Positive values indicate that the year was later than average and negative values indicate earlier. 

The standard deviations in the historical data (two – four years for each site) are given in error 

bars.  
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Figure S9. Linear regressions between the site predictability assessed via Continuous Ranked 

Probability Score and different explanatory variables related to timing with the p-value and 

coefficient of determination (R2) given in each panel. The explanatory variables tested were the 

day of year (DOY) of 15% (a), 50% (b), and 85% greenup (c) and the day of year anomaly of the 

15% (d), 50% (e), and 85% (f) greenup days. Variation in predictability amongst sites was 

significantly explained by DOY of 50% and 85% greenup and the anomaly in the timing of 50% 

and 85% greenup.  

 

Appendix: Model Descriptions 

Below are the model descriptions provided by the participants of the Challenge and 

edited for consistency.  
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CSP-Gwave 

The CSP-Gwave (“greenwave”) model represented seasonality using a double logistic 

function. Within a single year (growing season), the function consisted of two primary 

components: one curve for greenup, and another for “brown-down”. It accommodated trends in 

greenness between periods of greenup and brown-down by allowing greenness to increase or 

decrease as vegetation (e.g., leaf physiology) changes over the winter or summer (Elmore et al., 

2012). It used a corrected sum of the curves for each year to obtain a single, continuously 

differentiable curve spanning the time period of interest. Spatial and temporal heterogeneity was 

accommodated using fixed and random effects on the parameters of the curve. Most, if not all, of 

the parameters in the model had direct, phenological interpretations – metrics such as the timing 

of peak growth, peak greenness, and duration of the growing season. The greenwave model was 

developed originally to handle the sparsity of observations in Landsat time series of vegetation 

indices by “borrowing strength” from observations in all sites and years. One major limitation of 

the model in the phenology forecasting challenge – and its application to PhenoCam data, 

generally – is that covariates were not allowed to vary daily. The team did not expect this model 

to compete favorably with models that are able to use more granular covariate information.  

The greenwave model was implemented using greta in R on a GPU-enabled VM hosted 

on Azure. Most of the forecasts were made by hand or using simple cron jobs. Training data 

included all available deciduous forest NEON sites: HARV, BART, SCBI, STEI, UKFS, GRSM, 

DELA, CLBJ, BLAN, TREE, UNDE, MLBS, ORNL, and LENO. The final model included 

spatial random effects on greenness during the winter season, and on the ‘greendown factor’ — 

the parameter used to control changes in greenness during the growing season. Spatiotemporal 

random effects were placed on parameters related to the timing of peak greenup, the magnitude 
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of peak greenness, and the duration of the growing season. Fixed effects on parameters included 

mean annual precipitation, temperature, a precipitation-by-temperature interaction term, long-run 

summary stats (quantiles) for Normalized Difference Vegetation Index (NDVI) at each site 

developed using MODIS, and field latitude. All model refinements involved post-hoc analysis to 

determine if as-yet unincorporated site level biophysical factors explain variability in random 

effects on parameters. Additional details on the model, including all model math, can be found 

here: https://gitlab.com/apis-staging/greenwave (on the “neon” branch). 

Team members included Luke Zachmann and Vincent Landau. 

 

CU_Pheno 

The CU_Pheno model was a deterministic, discrete time compartment model that 

simulated the transition of pixels between green (G) and non-green (N) color channels as the 

forest moves through yearly transitions. The model was initiated at an initial greenness value, 

G_init, based on the previous three days of data at any point in time. Three epochs with distinct 

growth rates were considered: winter dormancy, which had no significant growth or decay; 

spring greenup, modeled by steep linear growth; and summer leaf maturation, modeled by an 

inverse exponential decay function. The transition from winter to spring greenup was based on 

the number of growing-degree days (GDD's) accumulated since January 1 of the given year, 

using NEON's temperature data. The transition from spring greenup to summer leaf maturation 

occurred when the maximum GCC value was reached, informed by the historically observed data. 

Five parameters were fit to all existing historical data: initial GCC, spring growth rate, summer 

decay rate, winter-spring transition (GDD), and spring-summer transition (GCC maximum). The 

parameter combination that minimized the sum of the squares when comparing model 
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predictions to historical data for each site was used for forecasting. A scaled k-fold cross 

validation method was used to predict the model uncertainty. Additional details can be found at 

https://github.com/lcpowers/PhenoRepo. 

Team members included Josh Seabaugh, Casey Middleton, Claire Powers, Brett 

Melbourne, and Eric Vance. 

 

DALEC-SIP 

The DALEC-SIP model was a process-based carbon cycle and ecosystem model. It 

coupled a leaf-to-canopy radiative transfer model based on the spectral invariant properties (SIP) 

to the Data Assimilation Linked Carbon (DALEC) model. The DALEC model simulated detailed 

processes of vegetation phenology, carbon fluxes and carbon pool dynamics. The SIP-based 

radiative transfer model physically links fundamental leaf traits (e.g., pigment concentrations) 

and canopy structural parameters (e.g., Leaf area index, clumping index) to the observable land 

surface reflectance and vegetation indices (e.g., GCC).  

In the current phase of forecasting challenge, the DALEC-SIP model was setup and 

manually calibrated at each site with a variety of data from literature review, including Leaf 

Mass per Area (LMA), Vcmax, chlorophyll content, brown pigment content, peak growing 

season LAI, and eddy covariance carbon fluxes. Some important parameters that are not 

available, such as leaf angle distribution, clumping index and the PhenoCam-target observation 

geometry, were assumed with typical values by experience. Additional details can be found at 

https://github.com/hliu666/DALEC_SIP/tree/main.  

Team members included Haoran Liu, Min Chen, and Dalei Hao.  
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EFI_U_P  

The EFI_U_P model, as part of an undergraduate course in ecological forecasting at 

Virginia Tech, was a logistic growth process model (Eq. S1) where greenness (GCC) is 

represented as a function of the parameters (𝜃!, 𝜃", 𝜃#, 𝜃$) and day of year (𝑥%). GCC was 

forecasted for a 35-day period at the PhenoCam NEON sites (BART, CLBJ, DELA, GRSM, 

HARV, SCBI, STEI, UKFS).  

𝐺&&,% 	= 	 𝜃! 	+ 𝜃" 	 ∗ 	
()*(,!	.	,"∗)#)

!	.	()*(,!	.	,"∗)#)
	,    Eq. (S1), 

Parameters were calibrated using a Bayesian framework, with a Monte Carlo Markov Chain 

(MCMC) simulation. To parameterize, uninformed priors and initial values were used. 𝜃# was 

not parameterized using MCMC and its value was set at -50. Within the MCMC framework, 

10,000 iterations were run with 3 chains for each parameter. A burn-in period was set for 1000 

iterations.  

  To quantify total uncertainty for the forecast, the standard deviation around the calculated 

mean values was quantified and visualized. Due to the methods used in this forecast, total 

uncertainty encompasses both process and parameter uncertainties. Additional model details can 

be found on github: https://github.com/jacob8776/EFI_U_P_challenge.  

 Team members included Jacob Wynne. 

 

Fourier 

The Fourier model captured the time-dependence of the greening process using the 

Fourier regression method and a set of temporal basis functions given below 

𝑓1(𝑡) 	=	𝑐𝑜𝑠 (2𝜋𝑛𝑡/𝑇),     Eq. (S2), 

𝑔1(𝑡) 	=	𝑠𝑖𝑛 (2𝜋𝑛𝑡/𝑇),     Eq. (S3),  
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where 𝑇	 = 	365	days, and 𝑛 ∈ {0, 1, . . . 50} for 𝑓1 and 𝑛 ∈ {1,2, . . . 50} for 𝑔1, giving us the 

final fitting function, 

𝑓(𝑡) 	= 𝑎2 + ∑ 𝑎132
14! 𝑐𝑜𝑠 (2𝜋𝑛𝑡/𝑇) + 𝑏1 𝑠𝑖𝑛 (2𝜋𝑛𝑡/𝑇),             Eq. (S4). 

The team fit the coefficients {𝑎1, 𝑏1} using ordinary least squares regression method on 

the sinusoidally transformed variables, {𝑐𝑜𝑠 (2𝜋𝑛𝑡/𝑇),𝑠𝑖𝑛 (2𝜋𝑛𝑡/𝑇)}. The advantage of using 

OLS on basis functions was that it was extremely fast and robust to missing time points. This 

method may be expanded to include weather features as additional variables to the OLS 

regression. The Fourier team chose to omit weather as they were aiming to perform long term 

forecasts (beyond 7–14 days horizon where weather forecasts are generally unavailable).  

Uncertainties in the predictions were calculated by fitting the model (Eq. S4) to the 

squared responses, and estimating the prediction variance as, 

𝑉𝑎𝑟[𝑌] = 	𝑌"H − (𝑌H)"	    where 𝑌2"  and 𝑌 are estimated from the data. 

Additional details can be found at 

https://github.com/uttambhat/ecology_forecast_challenge_2021. 

Team members included Uttam Bhat.  

 

greenbears (greenbears_gams, greenbears_stl, and greenbears_par) 

The “greenbears” team explored a variety of simple parametric models for forecasting 

phenology change at the eight target competition sites. The greenbears team participated in the 

EFI challenge as part of a graduate seminar at University of California, Berkeley led by Carl 

Boettiger titled “Reproducible & Collaborative Data Science”.  

Over the course of the challenge, the greenbears team submitted forecasts from several 

different models. They started with a simple parametric approach and tried to fit a smooth cyclic 
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curve based on day-of-year for each site. They used generalized additive models (GAMs) to 

estimate an annual smooth cycle in the GCC greenness index (Wood, 2017). The first model they 

submitted (as greenbears_gams) assumed every year should have the same cycle and provided 

no covariates. They explored forecasting with a “Seasonal and Trend decomposition using 

Loess” (STL; Hyndman and Athanasopoulos, 2021) model but found that it performed worse 

than the GAM approach, so they decided to refine their GAM model rather than pursue the STL 

approach. They performed exploratory analysis on different variables that might be correlated 

with GCC values, given the historical data that was available. Based on this, they chose to 

incorporate photosynthetically active radiation (PAR) into our second GAM model (NEON, 

2021). Therefore, their model greenbears_par extended the GAM design with a linear effect of 

PAR. They generated a PAR forecast based on its historical cycle using a first-stage cyclical 

GAM on historical PAR values, an ad hoc approach that they hypothesized might capture a 

different aspect of the cyclical trend. Throughout all approaches, they treated the eight target 

sites as independent.  

To automate this code, they set up a Github Action and wrote a script that pulled up-to-

date phenology and covariate data, estimated models, and submitted those models to the NEON 

API. They then scheduled this code to run every morning and submit a forecast. An archived 

snapshot of the repository is available on Zenodo at http://doi.org/10.5281/zenodo.5738488. 

Team members included Ben Goldstein, McKalee Steen, and Raphaela Floreani Buzbee. 

 

PEG  

The PEG model was intended as a simple but informed “proof of concept”. Initial 

versions were historical means with a few different ways of estimating standard deviation. 
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Around mid-March during the Challenge period, this was changed to use the R ‘forecast’ 

package (Hyndman and Khandakar, 2008) with seasonal and exponential smoothing. This model 

was a Simple Seasonal + Exponential Smoothing Model, with the GCC targets as inputs. 

Additional details are available through https://github.com/genophenoenvo/neon-efi-

challenge/tree/master/simple. 

Team members included Debasmita Pal, Jessica Guo, David LeBauer, and Arun Ross. 

 

PEG_RFR (PEG_RFR0, PEG_RFR, PEG_ RFR2) 

 Three versions using random forest regression were developed as part of this challenge. 

The models were primarily developed as auto-regressive models based on the past GCC data. For 

future predictions in case of PEG_RFR2, hourly NOAA weather forecasts were obtained via the 

EFI website, summarized as the median across 21 model ensembles, and summarized as the mean 

or sum into daily variables. Code for all PEG models are available at 

https://github.com/genophenoenvo/neon-efi-challenge/tree/master/ML.  

 Team members included Debasmita Pal, Jessica Guo, David LeBauer, and Arun Ross. 

PEG_RFR0 

The PEG_RFR0 model was a multi-output regression model, which predicted 36 days of 

GCC (to next 35 days) using immediate past GCC (last 5 days) as well as GCC value from the last 

year (25 days). This meant that to predict t to (t+35) days of GCC, this model used GCC value from 

(t-1)th to (t-5)th day and GCC value from (t-5)th to (t+19)th day of last year. Each site was modeled 

individually with Random Forest Regression (RFR) using 3-fold cross-validation after dropping 
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all the missing values and evaluated based on Root Mean Square Error (RMSE) and R-squared 

value. 

PEG_RFR 

The PEG_RFR model was also a multi-output regression model, which predicted 36 days 

of GCC (t to t+35 days) using immediate past GCC (last 5 days) and GCC value from the last year, 

meaning (t-5)th to (t+14)th days GCC from last year. The window size of last year was reduced in 

this case because linear interpolation was used to fill in missing values. Then, a similar process 

was followed as in PEG_RFR0. 

PEG_RFR2 

The PEG_RFR2 model was a single output regression model, which used GCC value from 

last year and current weather data, meaning to predict GCC value of tth day, we use (t-7)th to (t+7)th 

days’ GCC of last year and weather variables (max_temp, min_temp, radiation, precipitation) of tth 

day. Past weather data was extracted from Daymet and used to train the model. To forecast GCC 

for future days, the median of NOAA ensemble forecasted weather parameters were used.  

PhenoPhriends  

The PhenoPhriends model, as part of the ecological forecasting course at Boston 

University, predicted greenness with a structure based on the logistic growth function and fit 

using a Bayesian framework. The outcome of the model was a forecast of greenness (GCC) each 

day for a 35-day window at eight NEON sites (BART, CLBJ, DELA, GRSM, HARV, SCBI, 

STEI, UKFS). In this model, next day greenness was equal to the current day’s greenness plus 

coefficient term determined by that day’s maximum temperature. Inputs to the model included 
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previous day’s GCC value from NEON PhenoCam data and maximum daily temperatures derived 

from NOAA ensemble weather data provided by the EFI team. Training data for the 

PhenoPhriends model included historical GCC data and Daymet maximum daily temperatures at 

each site.  

The PhenoPhriends team fit separate process (Eq. S5) and data (Eq. S6) models with 

uninformative priors to forecast spring GCC and quantify observation, parameter, and process 

uncertainties. 

𝐺&&,%.! = 	𝑁(𝐺&&,% , 𝜏) 	+ 	𝑁(𝑚𝑎𝑥𝑡𝑒𝑚𝑝, 𝜏),   Eq. (S5), 

𝑌% = 𝑁(𝐺&&,% , 𝜏),       Eq. (S6), 

 where τ was given a prior of a Gamma distribution.  

They assimilated new GCC observations by fitting an iterative MCMC approach in JAGS 

using the ‘rjags’ package in R (Plummer, 2021). Additionally, they applied a Kalman filter for 

their final forecast to assimilate current-day GCC observations before each new forecast timestep. 

This allowed them to not only visualize the current predictions for the next 35 days but also how 

that prediction had changed over the course of time (typically a week). Their code is available at 

https://github.com/EcoForecast/PhenoPhriends. 

 Team members included Sam Agate, Devin Hubbard, Mira Kelly-Fair, and Charlotte 

Malmborg. 

 

TEAM_MODIS 

The TEAM_MODIS model predicted greenness based on the spatio-temporal model 

under the Bayesian framework that the TEAM_MODIS team had previously developed to 

forecast the peak onset of greenness (POG) of vegetation. The model details can be found in 
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Neupane et al. (2022). In this model, growing-degree-day (GDD) and land cover types were 

predictors and the MODIS satellite observed POG was the response variable (Friedl et al., 2012). 

The daily GDD (base -5°C) was calculated using the daymet daily minimum and maximum 

temperature values (Thornton et al., 2020). The final model was based on the observations from 

2001 to 2016. Using this model, they predicted the mean POG in all NEON sites. Then, they 

extracted the daily observed temperatures from the North American Land Data Assimilation 

System (NLDS, Xia et al., 2012) assimilated product for all NEON sites. This data was available 

at a time lag of about six days. Then, using the NLDS daily temperature data, they calculated the 

daily accumulated GDD up to the POG as predicted by their model. Then, they pulled the current 

accumulated GDD values for each site and compared this to the average accumulated GDD from 

2001 to 2016 to assess how far off they were from the average GDD value on the same day of 

year from past years. They used this offset of current versus average past years to shift a natural 

spline fit to the data by a set number of days. For example, if the current year was lagging 5 days 

behind the average GDD accumulation for greenup from 2001 to 2016, they shifted our spline 

values backward by five days. They then used these spline values to inform our predictions. 

Uncertainty around their predictions was rendered as a constant value by taking the standard 

deviation of GCC in three distinct phases: (1) initial phase, in which GCC values have not yet risen 

(between day of year 0 and 60; uncertainty calculated by 2 standard deviations); (2) rising phase, 

or an active greenup phase (between day of year 61 to 150; uncertainty calculated by 5 standard 

deviations); and (3) termination phase, or when GCC values no longer rise (after day of year 151; 

uncertainty calculated by three standard deviations). Additional details can be found at 

https://github.com/syamghali/Neupane_EtAl_2022_GeoInfo.git 

Team members included Leslie Reis, Naresh Neupane, and Vaughn Shirey. 
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GPEDM 

The GPEDM model used an empirical dynamic modeling (EDM) approach. This was 

chosen because the coupling between plant phenology and environmental variables is highly 

nonlinear. This approach is based on the mathematical theory of reconstructing system attractors 

using time-delay embedding (Takens, 1981). It operates with minimal assumptions and reveals 

complex causal relationships from time series. In practice, it has been used effectively in 

predicting fish population dynamics, outperforming parametric alternatives. Multivariate EDM 

can account for the effects of environmental factors. In particular, the GPEDM team used a 

Bayesian approach to reconstructing system attractors, named Gaussian Process empirical 

dynamic modeling (GP-EDM) (Munch et al., 2017). 

Time series of PhenoCam Green Chromatic Coordinate (GCC) (Seyednasrollah et al., 

2019) were pre-processed to fill in gaps with linear interpolation, smoothed with Whittaker 

smoothing, and transformed linearly within each site to the range of (-0.5, 0.5) to be scale-free. 

Historical and forecasted meteorological data at focal sites, including daily maximum 

temperature, daily minimum temperature, and daily precipitation, were retrieved from NEON 

(DP1.00003.001 and DP1.00006.001) and NOAA. Meteorological data were also smoothed and 

transformed. 

The GPEDM team used time-delayed variables, both GCC itself and meteorological 

variables, as the predictors (X) of GCC on the day of interest (y) in the GP-EDM. They calculated 

the mean GCC in windows of 16 days for 8 windows before the day of interest. For each 

meteorological variable, they calculated their means in windows of eight days for eight windows 
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before the day of interest. A hierarchical structure was designed to describe how the phenology-

environment relationship (f) is auto-correlated over space and time. 

 

𝑝(𝑦6,7,%|𝑓6,7 , 𝑋6,% , 𝜖)	~	𝑁(𝑓6,7(𝑋6,%), 𝜖),        Eq. (S7), 

𝑝(𝑓6,7|𝜙, 𝜏, 𝜌, 𝜔)	~	𝐺𝑃(𝑔6, 𝛴7),    Eq. (S8), 

𝑝(𝑔6|𝜙, 𝜏, 𝜌)	~	𝐺𝑃(ℎ, 𝛴6),            Eq.( S9), 

𝑝(ℎ|𝜙, 𝜏)	~	𝐺𝑃(0, 𝛴),       Eq. (S10), 

𝛴7 = 𝑒𝑥𝑝(−8
"
||𝑑9 − 𝑑:||")𝛴6,             Eq. (S11), 

𝛴6 = 𝜌𝐼(𝑠9 = 𝑠:)𝛴,     Eq. (S12), 

𝛴 = 𝜏2𝑒𝑥𝑝(− 𝜙
2 ||𝑋𝑖 −𝑋𝑗||

2),             Eq. (S13), 

 

where φ is the characteristic length-scale for jth predictor, governing how much h varies in the 

direction of the jth predictor; τ2 is the variance of h; ρ is the spatial correlation, governing how 

much g varies across sites (s); ω is the length-scale for day of year (d), governing how much f 

varies over time; ε is the Gaussian noise for y. Notably, they adopted automatic relevance 

determination (ARD) by setting the priors of φ to be dependent on the time lag of the jth 

predictor, such that predictors closer to the day of interest are more likely to have larger φ. 

For efficient calculation, they used sparse Gaussian Process distributions with a 

representative set of 500 basis vectors, each drawn from a cluster of historical states from k-

means clustering. They used back propagation, a gradient-based method to optimize the model 

parameters. At each iteration, parameters were chosen to improve the one-step-ahead forecasting 

accuracy, until convergence or 200 iterations. They implemented a stochastic version of back 

propagation, optimizing parameters for 100 random observations in every 10 iterations. Every 
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day, they trained empirical dynamic models with historical phenological and meteorological data 

and made predictions with optimized parameters and forecasted meteorology in the following 35 

days. Additional details can be found at https://github.com/zhulabgroup/phenology-efi/. 

Team members included Yiluan Song, Stephen B. Munch, Uttam Bhat, and Kai Zhu. 

 

VT_Ph_GDD  

The VT_Ph_GDD model, as part of a graduate course in ecological forecasting at 

Virginia Tech, was built using a logistic growth process model (Eq. S14) fit in a Bayesian 

framework to predict spring greenness, where 𝑥% = cumulative growing degree day (GDD) on the 

day being predicted. GDD was calculated using Eq. (S15) on each day a forecast was made, 

where 𝑚𝑎𝑥%(>*is the maximum air temperature and 𝑚𝑖𝑛%(>*is the minimum air temperature on 

a given day, and 𝑇?@6(was a constant set at 10°C.  

𝐺𝐶𝐶% 	= 	𝛩! 	+ 	𝛩"
()*(A!	.	A")#)

!	.	()*(A!	.	A!)#)
,          Eq. (S14), 

𝐺𝐷𝐷	 = 	∑𝑚𝑎𝑥((𝑚𝑎𝑥%(>* 	+ 	𝑚𝑖𝑛%(>*)/2	 −	𝑇?@6(), 0),   Eq. (S15), 

To forecast the covariate, GDD, 35 days into the future the VT_Ph_GDD team used the 

National Oceanic and Atmospheric Administration (NOAA) Global Ensemble Forecasting 

System (GEFS) forecast of air temperature in Eq. (S15), taking the average across all 21 

ensembles in the NOAA GEFS forecast. Any days in the historical dataset when air temperature 

was not available through the NEON meteorological data, the VT_Ph_GDD team filled using the 

NOAA GEFS air temperature forecast for that day. 

To quantify model process, observation, and parameter uncertainty, they fit a separate 

process model (Eq. S14) and data model (Eq. S16), with uninformed priors (Eq. S17) on 𝛩!, 𝛩", 

and 𝛩$, with 𝛩#	set to -50.  
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𝑦% 	= 	𝑁(𝐺𝐶𝐶% , 𝜎),     Eq. (S16), 

𝛩 𝑥 ~ 𝑁(0, 10000),                 Eq. (S17), 

Where 𝜎~U(0.0001,100). 

They used an iterative batch fitting approach to assimilate new observations of GCC, 

whereby all data was re-fit using nimble each day a forecast was made, using three chains, 

10,000 iterations, and a burn in period of 1,000 iterations. They assessed convergence of chains 

using the potential scale reduction factor of the Gelman-Rubin statistic (𝑅a), where chains were 

considered to have converged when 𝑅a was less than 1.2. Additional details can be found at 

https://github.com/eco4cast-class-VT/phenology_grad. 

Team members included Benjamin Miller, Whitney Woelmer, and Garret Dettman. 
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