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The widespread use of species traits in basic and applied ecology, conservation and bio-
geography has led to an exponential increase in functional diversity analyses, with > 10 
000 papers published in 2010–2020, and > 1800 papers only in 2021. This interest is 
reflected in the development of a multitude of theoretical and methodological frame-
works for calculating functional diversity, making it challenging to navigate the myri-
ads of options and to report detailed accounts of trait-based analyses. Therefore, the 
discipline of trait-based ecology would benefit from the existence of a general guideline 
for standard reporting and good practices for analyses. We devise an eight-step pro-
tocol to guide researchers in conducting and reporting functional diversity analyses, 
with the overarching goal of increasing reproducibility, transparency and comparabil-
ity across studies. The protocol is based on: 1) identification of a research question; 
2) a sampling scheme and a study design; 3–4) assemblage of data matrices; 5) data 
exploration and preprocessing; 6) functional diversity computation; 7) model fitting, 
evaluation and interpretation; and 8) data, metadata and code provision. Throughout 
the protocol, we provide information on how to best select research questions, study 
designs, trait data, compute functional diversity, interpret results and discuss ways to 
ensure reproducibility in reporting results. To facilitate the implementation of this 
template, we further develop an interactive web-based application (stepFD) in the form 
of a checklist workflow, detailing all the steps of the protocol and allowing the user 
to produce a final ‘reproducibility report’ to upload alongside the published paper. 
A thorough and transparent reporting of functional diversity analyses ensures that 
ecologists can incorporate others’ findings into meta-analyses, the shared data can be 
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integrated into larger databases for consensus analyses, and available code can be reused by other researchers. All these elements 
are key to pushing forward this vibrant and fast-growing field of research.

Keywords: biological diversity, ecosystem functioning, open science, replicability, reproducibility, standardised protocols, 
trait-based ecology

Introduction

Failure to reproduce many results in the published literature 
is causing discussions among scientists about poor research 
practices (Baker 2016, Fanelli 2018). A lack of reproducibility 
(Glossary) hinders our ability to corroborate or falsify results, 
and is often associated with incomplete reporting of experi-
mental protocols and pipelines (Munafò et al. 2017), lim-
ited data and code sharing (Tenopir et al. 2011, Culina et al. 
2020) and misuse of statistics and analyses (e.g. cherry pick-
ing statistically significant results, p-hacking, hypothesising 
after the results are known; Fraser et al. 2018). Like in other 
scientific disciplines, ecologists do not evade such practices 
(Borregaard and Hart 2016). For example, reproducibility has 
become highly relevant in field-based ecological studies, due 
to the impossibility of exactly repeating the results obtained 
via observational data (e.g. along environmental gradients), 
where accounting for abiotic and biotic factors is more chal-
lenging than in controlled laboratory conditions (Ellison 
2010, Powers and Hampton 2019). Concerns over trans-
parent practices in ecology (Fidler et al. 2017, Fraser et al. 
2018, Culina et al. 2020, Eckert et al. 2020) have prompted 
the development of protocols to enhance and achieve best 
standards in data acquisition, including pipelines and proto-
cols for conducting regression-type analyses (Zuur and Ieno 
2016), modelling species distributions (Araújo et al. 2019, 
Feng et al. 2019, Zurell et al. 2020), performing pheno-
typic selection analyses in evolutionary ecology (Palacio et al. 
2019b) and collecting trait data (Cornelissen et al. 2003, 
Moretti et al. 2017, Klimešová et al. 2019).

Despite this progress, discussions about reproducibility 
are still incipient in trait-based ecology. Trait-based studies 
have increased exponentially in the last 20 years (Fig. 1), 
advancing our understanding of the impact of global change 
on biodiversity (Newbold et al. 2020), ecological resil-
ience (Pausas et al. 2016) and determinants of assembly 
rules at different spatial and temporal scales (Mouillot et al. 
2021). As a result, estimating functional (or trait) diver-
sity (Glossary) has emerged as one of the core constructs in 
modern ecology (McGill et al. 2006). This broad interest 
has prompted the development of a myriad of methods and 
metrics (Schleuter et al. 2010, Pavoine and Bonsall 2011, 
Mammola et al. 2021), making it difficult to select appro-
priate methods for answering specific ecological questions 
and to keep track of new concepts and approaches. Given 
that conclusions drawn from any given study are sensitive to 
how data are collected, handled (e.g. methodological choices 
preceding functional diversity computation) and analysed 
(Lavorel et al. 2007, Maire et al. 2015, Perronne et al. 2017), 

there is urgent need for addressing reproducibility practices 
in trait-based ecology and developing a standard for report-
ing study design and analyses.

To this end, we have devised a general roadmap for trans-
parent reporting of all the steps typical of any trait-based 
study. We developed an eight-step protocol from study 
inception and design to data, metadata and code report-
ing (Fig. 2). We suggest that trait-based studies start with 
the conceptualisation of an ecological question, generally 
ingrained in a theoretical hypothesis-driven framework 
(Step 1). A clear ecological rationale then informs an appro-
priate experimental design (Step 2). Next, occurrence (Step 
3) and trait (Step 4) data – the raw material of any trait 
analysis – are collected. Data exploration (Step 5) precedes 
the core of the analysis with functional traits (Step 6) and 
the validation, interpretation and reporting of results (Step 
7). The last step (Step 8) encompasses data and code shar-
ing to ensure the reproducibility of the entire pipeline. The 
protocol provided here is geared primarily toward scientists 
who are entering the discipline of trait-based ecology and 
have little to moderate experience with functional diver-
sity analysis. More experienced users, however, might also 
find the protocol useful, particularly the elements pertain-
ing to data analysis (Step 6), validation and interpretation 
(Step 7) and transparent reporting of the study (Step 8 
and the ‘reproducibility report’ developed via a Shiny web 
application).

Step 1. Identify an appropriate research 
question

Most scientific study begins with a question or hypothesis, 
and it is therefore critical to establish a salient and feasible 
one prior to collecting data. Because resources are often 
limited, one should ensure that the question addressed has 
theoretical and/or applied relevance, while being method-
ologically and logistically feasible. Researchers must therefore 
first evaluate whether examining functional diversity might 
provide more in-depth (or complementary) insights into the 
question of interest than other approaches (e.g. taxonomic or 
phylogenetic).

Then, once it has been established that functional diversity 
is relevant, one can follow two main scientific approaches: 
the hypothetico-deductive (formulating hypotheses first, and 
then testing these hypotheses by collecting data) or inductive 
(collecting empirical observations first, and then generating 
potential explanations of the patterns observed) paradigms 
(Mentis 1988). Hypothetico-deductive approaches are based 
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on the idea that one can untangle the complexity of natu-
ral systems by testing alternative hypotheses (see e.g. strong 
inference; Platt 1964). Many have argued that a hypothetico-
deductive scheme has led to more advancements in scientific 
understanding (Platt 1964, Betts et al. 2021), but the induc-
tive scheme also plays important roles, especially in creating 
foundational knowledge (Mentis 1988). The choice between 
hypothetico-deductive and inductive frameworks is a matter 
of philosophical preferences that is generally also constrained 
by the question and the scale of the study. For instance, 
plants and microorganisms are relatively easy to experimen-
tally manipulate in terms of their abundance, trait values or 
simplified abiotic and biotic conditions (typically at small 

spatio-temporal scales), and thus may allow easier imple-
mentation of the hypothetico-deductive scheme. Conversely, 
inductive approaches are especially relevant in studies involv-
ing monitoring through space and time, for example to assess 
how disturbance or protection affect functional diversity 
from past to current situations. Under these circumstances, 
predictive power can be more important than ecologi-
cal interpretation of a model, or than understanding the 
mechanisms underlying a pattern of interest (Currie 2019, 
Betts et al. 2021). Philosophical differences between the two 
approaches are discussed extensively elsewhere (Mentis 1988, 
Betts et al. 2021). Here, we simply suggest that studies of 
functional diversity can be useful in both views, and call for 
consideration of these general conceptual aspects while con-
ceiving study designs.

Step 2. Identify an appropriate study design

The choice of the study design – experimental, observational, 
simulation or meta-analytical – should be dictated by the 
research question(s) (Step 1). Experimental studies allow 
controlling for major confounding factors inherent to natural 
settings, but often represent simplified systems. For instance, 
an experiment can isolate the role of biotic interactions (e.g. 
competition, facilitation) in community assembly by manip-
ulating community trait composition or environmental 
conditions, typically at very fine scales. Observational stud-
ies facilitate insights into ecological patterns, but their abil-
ity to disentangle the mechanisms underlying them is often 
limited (de Bello et al. 2012, Spasojevic and Suding 2012, 
Cadotte and Tucker 2017). In parallel, simulations can be 
used to link patterns revealed from observational studies with 
putative processes to evaluate conditions in which a given 
process might result in an observed pattern. Simulations can 
also pinpoint numerical properties and statistical artefacts, 
which are especially important in functional diversity stud-
ies where subjective choices, e.g. on the number, type and 
measure of traits, are routinely made (McPherson et al. 2018; 
see Step 4). Finally, meta-analyses can increase the generalis-
ability of individual studies, and may facilitate the resolution 
of inconclusive or conflictive results (Greenop et al. 2018, 
Woodcock et al. 2019, Matuoka et al. 2020).

The study design should be considered in the context of 
data availability and limitations (Steps 3 and 4). Available 
databases vary in relation to their spatial coverage and 
extent, with spatio-temporal resolution typically decreas-
ing with spatial extent (Hulbert and Jetz 2007). Occurrence 
and trait data sources (opportunistic, historical or collected/
experiment) are a primary consideration when designing a 
study. At the same time, open source datasets (Supporting 
information), community science datasets (Callaghan et al. 
2021) and museum/herbarium collections are becoming 
increasingly important in trait-based ecology (Perez et al. 
2020). The scale of analysis will also determine whether a 
trait data source is appropriate for use. At small scales (e.g. 
when setting up an experiment), global databases may not 

Figure 1. (A) Annual (1990–2021) number of published papers 
using the term ‘functional diversity’ compared to ‘phylogenetic 
diversity’. (B) Number of papers using the two terms relativized to 
the total annual number of published papers, to account for the 
general growth in scientific literature volume in recent years 
(Landhuis 2016). The number of papers was sourced from the Web 
of Science (Clarivate Analytics) on 28 December 2021, using the 
queries: TS = ‘functional diversity’ and TS = ‘phylogenetic diver-
sity’. The total number of papers published each year is based on the 
Dimensions database, accessed on 12 January 2021.
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Figure 2. Workflow of the eight-step protocol proposed in this study. Animal silhouettes retrieved from Phylopics – with open licence.
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be appropriate to capture functional diversity and one’s own 
measurements are preferable. Conversely, global datasets with 
coarser trait resolution are most useful when assessing mac-
roecological patterns in functional diversity across large geo-
graphic extents (Violle et al. 2014), especially if focusing on 
interspecific differences (intraspecific variability is generally 
not included in global datasets).

If the functional diversity study is based on the collec-
tion of one’s own occurrence and trait data, then the iden-
tification of an appropriate sampling protocol is the next 
crucial step. This should be primarily driven by the research 
question (Step 1), the scale of the focal ecological phenom-
enon (McGill 2010), and the level of organisation at which 
functional diversity will be assessed (e.g. individuals within 
a population, species forming a community, communities 
in a regional pool; Violle et al. 2014). A more comprehen-
sive overview of different approaches in experimental design 
(Scheiner and Gurevitch 2001), and of their importance 
(Christie et al. 2019) is outside the focus of this manuscript.

Step 3. Assemble a community data matrix

Once the data has been collected (Step 2), these need to be 
formatted in a meaningful way to explore functional diver-
sity. Observations are organised in a community data matrix 
C holding data on the occurrence of species (in a broad 
sense, here referred to any type of data describing incidence, 
abundance, biomass or coverage of individuals; see below). 
Note that we used here the term ‘community matrix’ being 
the most typical level of organisation at which functional 
diversity is measured; but this matrix could hold data on 
individuals within species, communities within ecosystems 
or any other grouping level, and be analysed using similar 

principles. In the most common case, this is a matrix of S 
rows × n columns, where rows (i = 1, 2, …, S) represent sam-
pling units (e.g. sites, plots, transects) and columns (j = 1, 2, 
…, n) represent taxonomic entities of interest (typically spe-
cies, but also individuals or higher taxonomic ranks) found 
within each sampling unit. This basic matrix can be expanded 
to a set of temporal replicates or a set of individuals when 
accounting for intraspecific variation. This can be achieved 
by including additional rows accounting for different times 
at the same site or different individuals of the same species. 
According to the method used, one may need to include 
additional columns describing the grouping level (e.g. site, 
species), as well as columns in the trait data matrix matching 
rows in the community matrix (see more details in Step 4). In 
describing the matrix C, one should specify taxonomic reso-
lution, sample size (i.e. number of sampling units, temporal 
replicates), number of recorded taxa and sampling effort.

Data on the occurrence of species may take multiple 
forms with different ecological interpretations, which 
should be clarified. Incidence (presence/absence) and abun-
dance (number of individuals) data have historically been 
most commonly used in community ecology. Nevertheless, 
presence-only data or model-based estimates of species inci-
dence/abundance have also been used. Presence-only data 
(usually derived from online databases or historical museum 
records) are probably not suited for estimating functional 
diversity, because they introduce multiple sources of biases 
(e.g. different collection methods and sampling effort). 
Moreover, the community matrix derived from presence-
only data assumes zeroes as true absences. By contrast, 
occupancy modelling (Box 1) accounts for differences in 
sampling effort, overcoming many of the issues of presence-
only data (Shirey et al. 2021). The community matrix in 
this case is composed of occupancy probabilities (Box 1). 

Box 1. Species detectability and functional diversity estimation

Perfect detection of organisms is rare, often resulting in false species absences or the underestimation of population sizes 
and biodiversity. Estimates of functional diversity can be disproportionately affected by such ‘missed detections’, because 
species detectability is often linked to their functional distinctiveness or certain trait characteristics (including trait reso-
lution; Jarzyna and Jetz 2016), suggesting that specific traits might be underestimated or missed altogether during data 
collection (Roth et al. 2018, Palacio et al. 2020). The magnitude and the direction of the impact of species detectability 
on FD estimates will depend on several factors (Jarzyna and Jetz 2016), including 1) the proportion of undetected spe-
cies at a site and their traits, 2) the size of the regional species pool, 3) the spatial scale at which data are collected and 
FD is estimated and 4) how species detectability varies along spatial and environmental gradients (Jarzyna and Jetz 2016, 
Palacio et al. 2020).

Recent advances in statistical modelling allow accounting for species’ detectability. Specifically, multispecies occu-
pancy (Iknayan et al. 2014, Denes et al. 2015) and N-mixture (Gomez et al. 2018) models allow for estimation of the 
‘true’ probability of each species occurrence or their detection-corrected abundance, which can then be incorporated 
into functional diversity estimates (Jarzyna and Jetz 2016, Palacio et al. 2020). Multispecies occupancy and N-mixture 
models can be fitted in either a frequentist or a Bayesian framework (Devarajan et al. 2020). If models are fitted in a 
Bayesian framework, it is advised to report algorithmic details for initial values for parameter estimation, prior distribu-
tions and a summary of posterior estimates (e.g. occurrence and detection probabilities). Depending on the methodology 
used, details such as the number of Markov chains and iterations per chain, burn-in, the thinning parameter convergence 
evaluation may need to be reported as well.
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As another alternative to deal with this type of data, species 
distribution models can be fitted to obtain suitability values 
and used as inputs of the community matrix (Andrew et al. 
2021). It should be noted that both models are of recent 
application, so there are no general guidelines on which 
approach is better to handle presence-only data. Other 
types of data, such as biomass and percent cover in sessile 
organisms, are often treated as abundance proxies or trans-
formed into incidence data (Riva et al. 2020).

All these types of data can come from different sources. 
Besides laboratory/field experiments and traditional obser-
vations, rapid progression in monitoring technologies (e.g. 
remote sensing, acoustic sensors, camera traps, environ-
mental DNA, metabarcoding) has enabled ecologists to 
automate extraction of massive amounts of biodiversity 
data from different environmental media (e.g. water, soil, 
air), and identify taxa associated with the environment 
with high accuracy (Tosa et al. 2021). Whilst promising, 
the use of these data sources is still at an incipient state in 
trait-based ecology (Gasc et al. 2013, Schneider et al. 2017, 
Aglieri et al. 2020, Sigsgaard et al. 2020). Given method-
specific technical limitations (e.g. amplification of a large 
proportion of nontarget sequences and degradation time 
of DNA), we suggest always reporting whether sampling 
effort has been adequate to capture taxonomic diversity – 
e.g. through rarefaction techniques (Roswell et al. 2021).

Step 4. Assemble a trait data matrix

The second key element of any functional diversity analysis 
is the use of species traits. These include a variety of morpho-
logical, behavioural, physiological, anatomical, biochemical 
or phenological attributes that have the potential to impact 
the individual’s fitness (Violle et al. 2007). We note that there 
is an ongoing debate on terminology in trait-based ecology 
(Volaire et al. 2020, Dawson et al. 2021, Sobral 2021), which 
is beyond the scope of our paper. Regardless of the definition 
used, traits provide the raw material to build the trait data 
matrix T. This is a matrix of R rows × P columns where rows 
(i = 1, 2, …, R) represent the taxonomic entities of interest 
(univocally corresponding to the n columns in the C matrix 
when there is one trait value per taxonomic entity), and col-
umns (j = 1, 2, …, P) represent traits.

Trait data can be measured directly (e.g. in the field/labo-
ratory or from museum specimens), extracted from differ-
ent sources (e.g. peer-reviewed literature, field guides, online 
databases; Supporting information) or a combination of the 
above. Trait resolution (Glossary) should be carefully consid-
ered, particularly when different data sources are combined, 
as differences in resolution may confound ecological patterns 
and bias inference (Cordlandwehr et al. 2013, Palacio et al. 
2019a, Kohli and Jarzyna 2021). For instance, using coarse-
resolution categories as a substitute for continuous traits inev-
itably masks trait variability, inflating functional redundancy 
and decreasing functional distances among species, and, 
consequently, perceived functional diversity. Importantly, 

trait resolution is also expected to impact the estimation 
of underlying deterministic processes, which are typically 
inferred from patterns of functional divergence and conver-
gence. For example, while the detection of a true underlying 
structure for communities that are functionally convergent 
will not be affected by employing coarse-resolution traits, 
the ability to detect true functional divergence is likely to be 
significantly compromised (see Fig. 1 in Kohli and Jarzyna 
2021). However, coarse-resolution categorical traits are the 
most widely available and used in functional diversity analy-
sis for most taxonomic groups. We thus advise that research-
ers report trait resolution of traits that are not intrinsically 
categorical by indicating how many categories were used to 
split the trait.

Choosing how many traits to include is also not trivial. 
For instance, there might be trade-offs between using a low 
number of traits yielding limited variability to properly esti-
mate functional diversity, or using a high number of traits 
yielding too many unique combinations of trait values (in 
the most extreme case, functional diversity may equal species 
richness; Petchey and Gaston 2002). We refer to Step 5 for 
further insights.

Researchers should also keep in mind that the same trait 
might represent different processes and functions for different 
taxa or in different contexts. As an example, larger body size 
might imply a limitation of resource availability for animals, 
but may allow plants to outcompete others in the search for 
light. Similarly, the same function might be represented by 
different traits in different taxa. For example, dispersal abil-
ity is represented by the ratio between wing and body size 
and shape for many insects (Lancaster and Downes 2017), 
the ability and propensity to balloon for spiders (Bonte et al. 
2003), the seed size and dispersal modes for aquatic plants (de 
Jager et al. 2019), and the tendency to be entrained in long-
distance transport vectors in invasive species (Hastings et al. 
2005). Therefore, if the aim of the study is to analyse how a 
certain factor impacts on a given ecosystem function in dif-
ferent taxa, then one should select traits capturing the same 
function.

The ecological rationale for which traits are selected in 
the analysis is also critical and should be carefully described, 
along with the specific function(s) the trait is able to repre-
sent (Weiher et al. 1999, Luck et al. 2012). Most functional 
diversity studies rely on species’ mean trait values – i.e. aver-
aged across trait measurements collected from multiple indi-
viduals per species (‘mean field approach’ sensu Violle et al. 
2012). This relies on the assumption that among-species 
trait variation largely exceeds intraspecific trait variation. 
However, growing evidence shows that intraspecific varia-
tion can be substantial and affects different ecological pro-
cesses (Albert et al. 2011, Palacio et al. 2019b, Gentile et al. 
2021, Wong and Carmona 2021). For instance, trait values 
of species may vary along an environmental gradient due 
to phenotypic plasticity and/or local adaptation increasing 
intraspecific trait variation (Günter et al. 2019). As a result, 
two communities with the same species composition may 
have different trait distributions and thus different functional 
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diversity. Our protocol therefore calls for a clear statement 
whether trait data are described by measurements collected 
from several individuals and averaged at the species level, 
or if intraspecific variation has been taken into account and 
at which organisational level (e.g. site, species, populations, 
individuals, specific organs).

The matrix T can easily accommodate multiple measure-
ments per trait, for instance, when intraspecific trait variation 
is of interest. Some methods, such as functional dendro-
grams, require both S and R to be equal to the total number 
of trait measurements such that C and T are conformable 
matrices for multiplication (in other words, these matrices 
are CN×S and TS×P, termed ‘site × individual’ and ‘individual 
× trait’ matrices, respectively) and return an individual-based 
functional dendrogram as a functional space. Other methods, 
such as the trait probability density (TPD) framework, do not 
require initial matrix conformability because the T matrix is 
preprocessed before being combined with the information 
in the C matrix (see detailed explanation in Carmona et al. 
2016). Likewise, in the case of hypervolumes, functional trait 
spaces can be obtained via the union of individual-level func-
tional hypervolumes (see details in Mammola and Cardoso 
2020, Graco-Roza et al. 2022).

We ultimately recommend detailing the traits used, their 
nature (e.g. indicating their possible states or range values, and 
the ontogenetic stages of the sampled individuals), and their 
hypothesised ecological function(s). The methods should also 
contain all relevant information on trait data sources. If trait 
data are retrieved from online databases, then information on 
version and access date should be reported.

Step 5. Explore and prepare the data

Data exploration is perhaps one of the most informative, 
yet often overlooked, steps of analysing an ecological dataset 

(Zuur et al. 2010). When inspecting the community data 
matrix (Step 3), one has to carefully check for the existence 
and potential causes of zero-inflation in occurrence data 
(these can be true zeros or an artefact due to, e.g. imperfect 
detection, species misidentification or poor sampling design; 
Roth et al. 2018, Blasco-Moreno et al. 2019), dependency 
structures (e.g. spatio-temporal autocorrelation) and poten-
tial problems due to uneven spatio-temporal sampling effort 
(Walker et al. 2008, Ricotta et al. 2012). Trait data (Step 4) 
are often a mixture of numerical, ordered, fuzzy, and/or cat-
egorical variables that should be examined for correlation. 
Trait data can also be characterised by unbalanced levels in 
categorical traits, outliers in continuous traits and missing 
data, all of which might condition the trait space and func-
tional diversity estimation (Step 6).

To ensure data quality and integrity in both occurrence 
and trait data, as a general pipeline, we recommend to:

1. Plot the community data matrix (e.g. heatmaps) to assess 
the prevalence of zeroes (Box 1).

2. Check species sampling coverage (e.g. rarefaction).
3. Plot the distribution of continuous traits (e.g. using histo-

grams, density plots, Cleveland dot plots, correlograms or 
boxplots) to check for outliers. Plot categorical traits (e.g. 
with barplots) to check the balance of levels in fuzzy and 
categorical variables.

4. Evaluate multicollinearity among continuous traits (e.g. 
with scatterplots, pairwise correlations) and associations 
between continuous and categorical traits (e.g. with 
boxplots).

5. Identify missing trait data (e.g. with barplots or heatmaps).

These steps provide a better understanding into the nature 
of, and the issues inherent to the data, and thus allow mak-
ing informed decisions on how to best approach the analy-
sis. Depending on the outcome of initial data exploration, 
researchers might need to decide: 1) whether statistical 

Box 2. Missing data and data imputation

Because encountering species in the field and measuring relevant traits can be difficult, trait matrices often contain miss-
ing data, which can be randomly distributed or not (Nakagawa and Freckleton 2008). Missing data need to be dealt with 
in order to compute virtually any method for estimating functional diversity. Three main options are available: 1) omit 
the individuals/species for which trait data are missing, 2) impute the missing trait data and 3) convert the trait matrix 
using a distance measure that allows the presence of missing data (e.g. Gower distance; de Bello et al. 2021b). If omission 
is the selected strategy, the consequences of removing observations linked to missing trait data should be understood and 
discussed. Alternatively, one might use imputation methods (Penone et al. 2014, Taugourdeau et al. 2014, Johnson et al. 
2021), which are roughly based on two strategies: 1) replacing the missing value with a systematically chosen value 
from the phylogenetically/functionally most similar species; or 2) predicting the missing trait value, e.g. based on linear 
models (potentially including a phylogenetic covariance structure; Johnson et al. 2021) or principal component analysis 
(Podani et al. 2021), where traits are estimated as a function of other variables. Depending on whether the missing data 
are random or not, different algorithms should be considered for the imputation (Wulff and Jeppesen 2017). Finally, 
some simply use ‘average imputation’, calculating the mean or median of the values for that trait based on all the non-
missing observations. This has the advantage of keeping the same mean and the same sample size but many disadvan-
tages, and thus we discourage this strategy (Taugourdeau et al. 2014; see also Denny 2017 for a theoretical discussion).
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corrections, e.g. rarefaction of the data or accounting for spe-
cies’ imperfect detection, are needed to remove biases in the 
data (Box 1); 2) how to handle missing data (Box 2); 3) how 
to deal with collinearity (e.g. remove collinear traits, reduce 
dimensionality, identify set of correlated traits to define func-
tional groups) (Box 3); 4) how to handle outliers (in either 
trait or occurrence data), which might be of interest to the 
research question (Carmona et al. 2017, Violle et al. 2017) 
or should be removed being measurement errors; and 5) 
whether to weight the traits and/or transform them in differ-
ent ways to comply with the assumptions of the subsequent 
analyses (see additional insights in Step 6).

The Methods section should include a brief explanation of 
the problems and decisions made following data exploration.

Step 6. Estimate functional diversity

Only when the sampling design has been set up and imple-
mented (Step 2), the data assembled (Step 3–4), inspected 
and cleaned (Step 5), it is possible to estimate functional 
diversity and to evaluate whether statistical relationships exist 
that can be linked to the primary question of interest (Step 1).

If summarising or comparing univariate trait character-
istics is the principal goal of the study, then raw trait data 
can often be used without any data transformation. The 
most common examples of a univariate metric that uses raw 
trait data are the coefficient of variation (standard deviation 
divided by mean relationship; Yang et al. 2020) and the com-
munity-weighted mean (Garnier et al. 2004, Lavorel et al. 
2008), which summarises the mean trait value of all individu-
als or species in the population or assemblage.

If the focus of the study is quantifying multivariate func-
tional diversity, then this is achieved by first constructing 
a trait space(s) of the study system(s) from the T matrix, 
and then summarising it/them into meaningful descriptive 

metric(s) after accounting for the information in the C 
matrix. The first step in constructing a trait space is creating 
a trait dissimilarity matrix for all pairs of individuals or spe-
cies. Caution must be exercised when choosing a dissimilarity 
metric, as well as weights for each of the traits. A common 
practice in trait-based ecology is to assign the same weight to 
each trait (de Bello et al. 2021, Jarzyna et al. 2021), though 
consensus on best practices is lacking. For highly dimensional 
trait data including a combination of continuous, fuzzy 
coded, categorical and binary traits, the Gower’s distance 
(Gower 1971, Pavoine et al. 2009, de Bello et al. 2021) is the 
only metric option, because it can handle different types of 
traits and balances the contribution of traits and trait groups 
to overall dissimilarity (de Bello et al. 2021).

Several methods exist to construct a trait space from the 
trait dissimilarity matrix, including functional dendrograms 
(Petchey and Gaston 2002), convex hulls (Cornwell et al. 
2006), and probabilistic hypervolumes (Blonder et al. 
2014, Carmona et al. 2016, 2019, Mammola and Cardoso 
2020). Functional dendrograms, often created following 
a clustering procedure which best preserves original dis-
tances in the dissimilarity matrix (Mérigot et al. 2010), 
represent numerical traits fairly accurately, but perform 
poorly for non-continuous traits and have a strong depen-
dence on the clustering method (Mouchet et al. 2008, 
Maire et al. 2015). Convex hulls and hypervolumes repre-
sent differences based on continuous and non-continuous 
traits more accurately (Villéger et al. 2008, Laliberte et al. 
2010, Blonder et al. 2014), but are computationally more 
demanding. Regardless of the approach used, when build-
ing the trait space it is important to consider possible distor-
tions between initial and final distances. Both dendrogram 
or hyperspatial representations are subject to possible dis-
tortions, and their degree can be tested by checking the cor-
respondence between initial and final distances. This can 
be achieved, for example, using functions from R packages 

Box 3. Selecting the optimal trait space dimensionality

How many traits should be used in the analysis? Although it might sound like a trivial question, there is still no con-
sensus. The optimal number of traits (or functional axes when using dimensionality reduction techniques) is often 
system-, taxon- and method-dependent, with no guidelines that will work in all cases. On top of ecological and meth-
odological considerations, too many dimensions may introduce multi-collinearity in the analysis, degrading predictive 
power (Dormann et al. 2013) and increasing the likelihood of type II statistical error (Zuur et al. 2010). Therefore, 
we recommend researchers to evaluate dimensionality of the analysis on a case-by-case basis, eventually comparing the 
performance of the analysis across different numbers of dimensions. Recently, Mouillot et al. (2021) showed that, in 
most cases, between 3 and 6 functional axes should be enough to accurately describe the matrix T without significant 
information loss. Yet, there is considerable variation among taxonomic groups (Díaz et al. 2016, Pigot et al. 2020) and 
this inference was based on a single method for estimating functional diversity – convex hull (Mouillot et al. 2021).

From a biological point of view, it is important to remember that the selection of traits should be primarily driven 
by expert-based considerations of the studied organisms and system(s). From a statistical point of view, approaches for 
reducing the number of dimensions are no different from those used in other ecological domains (see Dormann et al. 
2013 for an overview), and include dropping collinear predictors or reducing the number of correlated traits via sequen-
tial regression (= residual regression; Graham 2003) or using dimensionality reduction techniques (e.g. principal coordi-
nate analysis) (Maire et al. 2015).
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‘BAT’ (tree.quality and hyper.quality) and ‘mFD’ (quality.
fspaces) (Table 1).

Once the trait space is constructed, one can calculate func-
tional diversity metrics suitable to answer research questions 
at different levels of organisation – individual observations 
used to construct the trait space, trait space level (alpha FD), 
pairwise comparisons of trait spaces (beta FD) or the whole 
system (gamma FD). When calculating multiple components 
of functional diversity, we advise that researchers are consis-
tent in the construction of the trait space, namely using a 
single trait space representation for all estimations. A com-
prehensive characterisation of a trait space typically includes 
quantifying three components of functional diversity: rich-
ness, divergence and regularity (Villéger et al. 2008, Pavoine 
and Bonsall 2011, Mammola et al. 2021). Functional richness 
measures the total breadth of functional diversity in a system. 
For functional dendrograms, functional richness is quanti-
fied as a sum of the dendrogram branch lengths (Petchey and 
Gaston 2006), sometimes weighted by abundance or detec-
tion-corrected probability of species occurrence (Jarzyna and 
Jetz 2016). For convex hulls, functional richness is defined as 
the volume of the minimum polygon that encloses all species 
(Mason et al. 2005), and for probabilistic hypervolumes it is 
a measure of the volume of the hyperspace (Mammola and 
Cardoso 2020). Functional divergence represents how obser-
vations are spread across the occupied trait space (Villéger et al. 
2008); it is often quantified as the average distance among 
observations or the mean distance of species to the centroid 
of their shared trait space (Villéger et al. 2008, Laliberté and 
Legendre 2010, Mammola et al. 2021). Lastly, functional 
regularity reflects the regularity of observations’ distribution 
within the trait space. Among other methods, it can be com-
puted as the regularity of branch lengths in a functional den-
drogram (Villéger et al. 2008) or, for hypervolumes, as the 

overlap between the observed hyperspace and a hypothetical 
hyperspace where traits and abundances are evenly distrib-
uted (Carmona et al. 2016, Mammola and Cardoso 2020). 
It must be noted that no approach is currently available for 
estimating divergence and regularity of convex hulls, since a 
convex hull is a homogeneous (binary) representation of the 
trait space, by definition equally dispersed and even through-
out (see details in Mammola et al. 2021: p. 1873, Table 3).

Note that most approaches to study functional diver-
sity can also integrate intraspecific variation in commu-
nity-level calculations, including functional dendrograms 
(Cianciaruso et al. 2009, Cardoso et al. 2015), weighted-
abundance sums of trait probability distributions across 
organisational levels (Carmona et al. 2016, 2019) or the 
union of functional hypervolumes (Mammola and Cardoso 
2020, Graco-Roza et al. 2022) (Step 4).

Step 7. Interpret and validate results

Depending on the primary research question (Step 1), func-
tional diversity metrics (both absolute and those corrected for 
species richness) might be further used in statistical analyses 
to link functional diversity with different ecological predic-
tors. A vast number of models are available in the literature, 
yet most statistical approaches relate functional diversity met-
rics through space or time to different environmental vari-
ables (e.g. generalised additive or linear models, structural 
equation models, machine learning algorithms, null models). 
Regardless of the approach, key elements to report include 
sample size, effect sizes, uncertainty estimates (e.g. standard 
errors, credible intervals) and model support (e.g. informa-
tion criteria, variance explained, discriminatory power) 
(Gerstner et al. 2017). Providing an absolute measure of 

Table 1. Examples of R packages and functions (in italics) aiding to implement the eight-step protocol for functional diversity analyses. Note 
that this list is not exhaustive.

Step Description R packages (or functions)

1. Identify an appropriate 
research question 

Literature review, research interest and 
hypothesis development

litsearchr, redyarn

2. Identify an appropriate study 
design

Simulations simul.comms(), virtualspecies

3. Assemble a community data 
matrix

Occurrence data retrieving rgbif, spocc
Data manipulation base, tidyverse

4. Assemble a trait data matrix Trait data retrieving BIEN, TR8, rfishbase, arakno
Data manipulation dplyr, tidyr, mFD

5. Explore and prepare the data Data visualisation base, ggplot2, lattice, plotly, visreg, mFD
Collinearity car, usdm, VIF
Missing data visualisation and imputation Amelia, BAT, mice, VIM 
Imperfect detection DiversityOccupancy, unmarked

6. Estimate functional diversity Data transformation BAT, FactoMineR, FD, mFD
Functional diversity metrics computation adiv, cati, BAT, FD, FDiversity, funrar, hillR, mFD, TPD

7. Interpret and validate the 
results

Model fit bmrs, lme4, nlme, glmmTMB, MCMCglmm, mgcv, 
lavaan, piecewiseSEM, randomForest

Cross-validation, bootstrapping and 
jackknifing

CrossValidate, cvTools, bootstrap

Data visualisation base, lattice, ggplot2
8. Ensure reproducibility Cite packages and their version! base::citation()
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model goodness-of-fit is crucial to assess how well it explains 
or predicts the ecological response(s) (Mac Nally et al. 2018). 
How to report statistical models is beyond the scope of this 
paper, and we refer the reader to Zuur and Ieno (2016) for 
an overview of presenting results in regression-types analyses.

Notably, some descriptors of functional diversity (e.g. 
functional richness) tend to be closely associated with species 
richness, such that their interpretation often relies on statisti-
cally controlling for this association. Null models are typi-
cally built to address this correlation, evaluating whether the 
observed values of functional diversity metrics deviate from 
the expectation conditional on the same species richness 
across sampling units. First, null (i.e. expected) values of each 
functional diversity metric are obtained by randomly selecting 
species from a regional species pool and randomising (often 
> 100 times) species’ occurrence values, while keeping site-
level species richness constant (Mason et al. 2013). Regional 
species pools for randomisation can be determined using dis-
tance-based clustering analysis (Carstensen et al. 2013) and 
might differ depending on the type and scale of the analysis. 
Next, standardised effect sizes (SES) of the deviation of the 
observed from the expected values are calculated as a mea-
sure of significance, with positive and negative values of SES 
indicating functional diversity higher and lower, respectively, 
than expected given species richness. Because interpretation 
of the SES values relies on the assumption of a symmetric 
null distribution, the skewness of null distributions for each 
functional diversity metric should be computed (Botta-
Dukát 2018). Alternatively, or in addition to SES values, 
quantile scores and their associated p-values might be quan-
tified for the observed functional diversity values (Swenson 
2011). Observed values that fall outside the 2.5% and 97.5% 
quantiles of the null distribution are indicative of functional 
diversity higher and lower, respectively, than expected given 
species richness. For an in-depth discussion on null models, 
we refer the reader to Götzenberger et al. (2016).

After model fitting, researchers may desire to determine 
the generality in their results through validation. Validation 
determines how a model performs across contexts, either 
through the application to a novel (or partly novel) dataset, or 
through the comparison of the model’s performance with one 
based on simulations of settings where the process of interest 
is eliminated, i.e. null models. Validation can help determine 
the limitations of an analysis in terms of its ability to explain 
phenomena or to extrapolate to new scenarios, which should 
then be summarised in the text of the manuscript.

Validation of results in functional diversity analyses 
should follow standard statistical procedures, which depend 
on the type of question and model. It is often required to use 
independent training, validation and testing datasets when 
the goal is predicting beyond the range of values in the data 
(e.g. future predictions). Resampling methods such as jack-
knife or cross-validation are often needed when data are lim-
ited or autocorrelated (Roberts et al. 2017), particularly for 
extrapolation. Because many functional diversity studies take 
place over large spatial and temporal scales, the validation of 
models accounting for spatial and temporal autocorrelation 

is critical (Dormann et al. 2007). For example, quantifying 
the predictive performance of spatial validation should be an 
important part in assessing the performance and bias of any 
modelling results (Ploton et al. 2020).

Step 8. Ensure reproducibility

Proper data curation, management and archival standards 
should be followed to maximise the transparency and repro-
ducibility of a functional diversity study. The FAIR guiding 
principles for scientific data management suggest that data 
should be Findable, Accessible, Interoperable and Reusable 
(Wilkinson et al. 2016). Below, we outline mechanisms that 
could help the field of trait-based ecology conform to these 
guiding principles.

Findable data, metadata and code, should be properly doc-
umented and referred to by a unique identifier. One way of 
accomplishing this is through the deposition of data and code 
used in analyses into an archival/repository service which pro-
vides digital object identifiers (DOIs). Static repositories such 
as Zenodo, Dryad and FigShare are useful for preserving the 
code used in analysis at the time of publication. Making code 
findable is especially important for functional diversity analy-
ses, given the different ways functional diversity can be calcu-
lated (see Step 6). Research is accessible through the sharing of 
these data, metadata and code, typically achieved by linking 
these to the paper via a Data availability statement. While 
there are limitations in the types of data that can be shared 
freely, the use of sample data (i.e. the community and trait 
matrices used to compute functional diversity) is encouraged 
within existing data licence agreements (Tulloch et al. 2018). 
Moreover, whenever possible, open-source protocols should 
be used ensuring the research is accessible in the future, critical 
for the rapidly growing field of functional diversity.

For data files, fields that contain information should be 
summarised by metadata that describe the type of data and 
their origin (Michener et al. 1997). These metadata should 
be provided with the original, archived data file. This is 
particularly important for functional diversity, where it is 
common practice to obtain trait information from different 
sources. The original sources of data (e.g. those listed in the 
Supporting information) should be properly referenced and 
identified allowing for interoperability and reusability in the 
future, and database versions, along with download dates, 
should be specified. An important component of interoper-
ability is, wherever possible, adopting standardised practices 
and vocabulary as they allow for aggregation of heterogeneous 
sources (Schneider et al. 2019). For example, the Thesaurus 
of Plant characteristics aims to standardise concepts of plant 
traits (Garnier et al. 2017). Standardisation of practices, 
including proper citation of the software and analytical tools 
used are essential for interoperability and reusability, ensur-
ing that as increasing sample and trait data become available 
studies can be reproduced with ease.

Many researchers find themselves thinking about repro-
ducibility after a project is completed – even here, we have 
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included reproducibility as the final step! – but we stress 
that FAIR practices should be implemented from a project’s 
inception. The Open Science Framework provides an online 
platform to link data and code storage systems (including 
Dropbox, OneDrive, GitHub and their own cloud storage). 
This architecture allows the merging of hosting platforms 
more suited for code with more visually-oriented project 
wiki pages for protocols, methodology and analysis. The use 
of these stable cloud storage platforms by research groups 
also ensures long-term availability of all project components 
within a lab in spite of researchers’ turnover.

Web application

To aid researchers in the task of performing trait-based anal-
yses, we developed a Shiny web app that goes through the 
proposed protocol. The stepFD app allows users to check 
the requirements needed at each step to fully reproduce 
their study and create a ‘reproducibility report’ that can be 
uploaded alongside the published paper to ensure transpar-
ent communication of methods and analyses. The checklist 
can also be downloaded (either as a .csv or .doc file) to be 
filled out offline. We encourage researchers to start filling out 
the form before carrying out a study. This will 1) promote 
thinking of ecological questions and portraying the steps of 
the project in detail (helpful also when writing grant propos-
als), 2) reveal potential sampling, data and statistical issues 
beforehand and 3) implement FAIR practices from the proj-
ect’s inception. The Shiny app, including a user’s guide, is 
available at <https://facuxpalacio.shinyapps.io/stepFD/>.

Conclusions

Our protocol offers a set of simple guidelines aimed at maxi-
mising reproducibility, transparency and consistency of func-
tional diversity analyses (Fig. 2). We would like to leave the 
reader with a few points of reflection.

1) Be flexible: do not limit yourself. While the protocol struc-
ture may appear dogmatic, our goal is not limiting creativ-
ity and lateral thinking. To us, this protocol is a flexible 
tool to aid researchers in navigating functional diversity 
analyses and in remembering key pitfalls and steps to 
transparently document a trait-based study. However, 
some of the steps presented here may not apply under 
specific circumstances – e.g. there are cases where it is not 
advisable to share sensitive data (Tulloch et al. 2018) – 
and specific research questions may require that one vio-
lates some of our recommendations (e.g. night science; 
Yanai and Lercher 2020).

2) Be a giant: offer your shoulders. The correct reporting of 
methods and statistics, as well as sharing data and codes, 
provides the foundation for other scientists to build upon 
your work. A thorough description of sample sizes, statistics 
and model estimates ensures that others can incorporate 

your findings into meta-analyses (Gerstner et al. 2017), 
shared data can be integrated into larger databases for con-
sensus analyses (Mouillot et al. 2021, Graco-Roza et al. 
2022), and available code can be reused by other research-
ers. Whether one sees this altruistically, as a collaborative 
effort to advance science as a whole, or opportunistically, 
as a way to increase one’ own citations and credibility in 
the field, the long-term benefits are undisputed.

3) Be informed: find your way through the jungle of metrics. As 
we have shown, functional ecology is a fast-growing field 
of research (Fig. 1). We have touched upon examples of 
methods and metrics based on the current literature, but 
new tools and approaches are being developed continu-
ously, and one must keep up with the literature to make 
the best out of this field (Mammola et al. 2021). Even 
though new methods will become available and concepts 
will emerge in the future, we believe that the key under-
lying philosophy and motivations of this protocol will 
remain valid and applicable.

4) Be permeable: exchange with other disciplines. Functional 
diversity represents only one of multiple frameworks 
within ecology. The constant interaction and integration 
with other disciplines forming the broader biodiversity 
research platform (e.g. taxonomy, phylogeny) is funda-
mental to answer questions and test hypotheses relevant 
to functional diversity itself.

All in all, we envision our protocol as a set of good prac-
tices and starting points; we are convinced that, as other 
standard protocols did, it may boost effective communica-
tion and an enhanced understanding of upcoming functional 
diversity research.
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Glossary

Functional diversity (= trait diversity, FD). 

A characterization of life diversity in terms of the diversity of functions (Malaterre et al. 2019). Operationally, any math-
ematical estimation of the diversity of traits of individuals composing a given group (a community, an ecosystem and 
so on), from simple measures of trait distributions (means, standard deviation, coefficient of variation, kurtosis) to the 
plurality of functional diversity indices developed in the last two decades (refer to Mammola et al. 2021 for an overview).

Intraspecific trait variation. 

Trait variance of a group of individuals of the same species. It results from phenotypic plasticity or local adaptation of 
different genotypes along environmental gradients or in response to biotic interactions (e.g. competition or mutualism).

Replicability. 

The process of replicating a certain study using different datasets and/or model systems. A lack of replicability occurs 
when qualitatively different results are obtained applying the same analytical approach.

Reproducibility. 

The process of repeating analyses conducted by others. A lack of reproducibility occurs when different results are obtained 
when re-analysing the data reported in a paper.

Trait. 

Any phenotypical entity – morphological, anatomical, ecological, physiological, behavioural, phenological – measured 
on individual organisms at any scale, from gene to whole organism, and which can be scaled up from individuals to 
genotype, population, species, community or ecosystem (Violle et al. 2007, Volaire et al. 2020).

Trait resolution. 

The coarseness of measured traits, ranging from highest-resolution continuous measurements to lowest-resolution binary 
categories (Kohli and Jarzyna 2021). Body size measured on a continuous scale is typically a high-resolution trait, whereas 
the categorical version of this trait (e.g. ‘small’, ‘medium’ or ‘large’) is a low-resolution one.
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