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Habitat fragmentation is the primary factor leading to species

extinction worldwide and understanding how species respond

to habitat edges is critical for understanding the effects of

fragmentation on insect diversity in both natural and managed

landscapes. Most studies on insect responses to the habitat

edge focus on bottom-up changes in resources. Only a few

recent studies have examined multi-trophic responses to

habitat edges; the results of these studies highlight the problem

that we lack a conceptual framework to understand the

complex results observed when a single species’ response to

an edge ‘cascades’ throughout the food web in ways that are

currently not predictable. Recent research from insect systems

suggests that habitat edge responses cascade both up and

down multi-trophic foodwebs and these altered species

interactions may affect evolutionary processes. Future studies

that investigate the effects of habitat edges on both ecological

and evolutionary dynamics can help to fill these knowledge

gaps and we suggest that insects, with short generation times,

present an ideal opportunity to do so.
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Introduction
Habitat loss and fragmentation is widely considered to be

the primary factor leading to species extinction world-

wide. Although multiple mechanisms contribute to spe-

cies losses in fragmented habitats, fragmentation is

usually associated with increased edge habitat [1], and
www.sciencedirect.com 
most effects of fragmentation attributed to patch area are

actually scaled-up edge effects [2]. Compared with core

(interior) habitat, edge habitats are subject to different

abiotic conditions, such as variation in solar radiation,

temperature, wind, soil moisture and humidity [3��].
The severity of the changes in abiotic conditions can

depend on how ‘soft’ or ‘hard’ the contrast is between the

two abutting habitats. Understanding how species re-

spond to habitat edges is critical for understanding the

effects of fragmentation on diversity in both natural and

managed landscapes [3��]. Yet, despite recent advances in

understanding single species responses to habitat edges,

we lack a framework to understand more complex inter-

actions or evolutionary processes. Here, we synthesize the

literature on ecological and evolutionary responses to

edges with a focus on empirical examples from insect

science; these well-studied systems provide a gateway to

understand mechanisms, interactions and, where genera-

tion times are short, evolutionary changes in real time.

Ecological responses to habitat edges
Bottom-up drivers of insect responses to habitat edges

The factors underlying single-species edge responses

have been formalized into an Edge Resource Model

(ERM) that created a simple set of predictions for any

species at any edge type based on resource quality and

distribution in adjoining habitats [4]. The model was

based on two fundamental mechanisms that are unique

to edges: (1) ecological flows of species/energy/material

from one adjoining habitat into another creating a gradi-

ent of habitat quality near the edge and (2) better access

to spatially separated resources is maximized at edges

(also known as ‘cross-boundary subsidies’). The ERM has

been a useful model for studying insect responses to

habitat edges because many edge responses result from

bottom-up changes in resources. The typical prediction is

that microclimatic changes near edges impact plant dis-

tribution or quality, and variation in these key resources

then cascades to alter herbivore and predator distribu-

tions. Notably, changes in the physical environment along

the habitat edge can change habitat structure, which may

increase the interception of allochthonous nutrients (e.g.

through increased deposition [5]) and thereby increase

plant quality for herbivores. For example, although den-

sity of a key host plant declined in patch edges during

colonization after the Mt. St. Helen’s eruption, higher

nutritive quality was shown to lead to insect herbivore
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outbreaks [6]. Such increases in plant quality along the

habitat edge may explain why a recent meta-analysis

found an overall increase in insect herbivore abundance,

richness, and plant herbivory along habitat edges relative

to core habitats [7]. The ERM provides a mechanistic

explanation for many edge responses reported in the

literature [3��], but it is limited to single species responses

and does not incorporate multi-species interactions or

predict how shifts in the community along a habitat edge

alters species interactions or top-down effects.

Top-down drivers of insect responses to habitat edges

The consequences of fragmentation for top-down control of

species have also been considered in the literature. A recent

meta-analysis found increased consumption in edge habi-

tats compared to interiors [8��]. Notably, this increased top-

down effect was driven primarily by herbivores feeding on

plants, and in particular by dietary generalists, not specia-

lists. Further, this meta-analysis found no evidence that

higher trophic level organisms such as predators or para-

sitoids increased consumption in edge habitats (but see

[9��], discussed below in ‘multi-trophic interactions and

community patterns’). Although herbivory rates change

near edges, top-down mechanisms such as changes in

predation rate have not been integrated into formal predic-

tions of edge responses and the edge literature is conflicted

about how predators respond to edges. Theory related more

generally to habitat fragmentation, not just habitat edges,

predicts that higher-trophic-level consumers should be

particularly vulnerable to habitat fragmentation (e.g.

[10]); the predicted negative impact of fragmentation on

predators is based on Island Biogeographic Theory [11] and

the idea that patch size and isolation have greater impacts at

higher trophic levels [10,12]. Despite the fact that edge

effects dominate in fragmented habitats, a common gener-

alization has emerged from the edge literature that gener-

alist predators increase along habitat edges [13]. The belief

that predators respond positively to edges may persist

because the edge effect literature is biased towards gener-

alist predators of avian nests [14], which makes it difficult to

ascertain whether this edge-predator effect is widely appli-

cable to other taxa. Thus, the conflicting views of predators

(that they often thrive at edges, but are especially vulnera-

ble to fragmentation) may come from focusing on different

predator communities and may be biased towards general-

ist, vertebrate mesopredators. In support of this assertion,

studies of insects in agricultural systems have primarily

demonstrated that predators track transitional gradients

in prey resources across the edge (e.g. [15]), and positive

edge responses are relatively rare. A better understanding of

how top-down interactions disrupt species mapping onto

critical resources is essential for predicting population and

community responses to habitat edges.

Multi-trophic interactions and community patterns

Landscape and conservation ecologists have studied how

habitat fragmentation affects individual species as well as
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communities for decades [16] and recent studies have

tried to understand how fragmentation affects food web

dynamics [reviewed in 8��,17]. However, most examina-

tions of species interactions in fragmented habitats are

restricted to two-species models [8��] and the few studies

that have examined how habitat fragmentation affects

multi-trophic interactions focused on isolation and/or area

effects (e.g. [18–20]), not the effects of habitat edges per se
(but see [9��]). Only two studies have examined responses

to habitat edges from a community perspective, and both

found top-down effects on herbivores. For example,

Evans et al. [21�] found decreased herbivore consumption

near edges, a result of trophic interactions among ants,

aphids, and a defoliating herbivore. In another multi-

trophic study, Wimp et al. [9��] demonstrated that pre-

dicted declines of planthopper herbivores near edges

were not explained by bottom-up effects on resources,

which did not vary in quality or quantity between edge

and core habitats, but instead were likely due to predator

avoidance. Predators may also ‘spillover’ into natural

fragments from managed habitat at higher rates than

other trophic levels [22�] and bias in dispersal patterns

may concentrate parasitoids at edges [23] thereby increas-

ing top-down control along edges. These results suggest

that top-down selective pressures can drive species

responses to habitat edges and argue for incorporating

predator/parasitoid densities as an additional resource

that may drive herbivore edge responses.

Most studies that examined the impact of habitat edges

on insect communities have quantified changes in abun-

dance or species richness, but did not examine changes in

community structure, critical resources or trophic inter-

actions that may have led to those responses [17]. These

studies have largely examined the prediction that insect

diversity and abundance will be greater along habitat

edges relative to the interior because edges represent

the convergence of two distinct habitats. While some

studies have found higher arthropod diversity in edge

relative to interior habitats, others have found no re-

sponse, or the reverse, often with inconsistent results

among different taxa in the same study [24–27,28�]. It

may therefore be useful to consider how feeding speciali-

zation and functional group might influence insect com-

munity responses to the habitat edge. Previous studies

have found that specialist herbivores are more likely to be

negatively impacted by the habitat edge relative to gen-

eralist herbivores [7]. For example, specialist planthop-

pers are negatively affected by edges due to the absence

of food in the adjacent habitat [9��,29], and this negative

response intensifies when there is a high degree of

environmental dissimilarity (or contrast) between the

two adjoining habitats [24,29]. However, because these

specialist herbivores are unwilling to cross from suitable

to unsuitable habitat, they are often found in aggregations

near the edge, and this can lead to increased rates of

parasitism, despite declines in parasitoid abundance along
www.sciencedirect.com
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the edge [29,30]. Thus, edges may increase resource

variability, with consequences for multiple trophic

levels, and specialists may be especially sensitive to such

variation.

Evolutionary consequences of altered
ecological interactions
Changes in the distribution of critical resources and top-

down pressures in a fragmented landscape alter species

abundance, which may in turn have evolutionary con-

sequences. The dominant evolutionary force affecting

organisms living within anthropogenically fragmented

habitats may be genetic drift (e.g. [31]), which acts to

reduce variation in small, isolated populations. Gene flow

can alleviate the effects of drift and enable the mainte-

nance of variation in well-connected habitats [31,32].

Adaptations and phenotypic plasticity, particularly in

dispersal morphology, may also facilitate gene flow [33].

Our understanding of evolutionary processes in fragmen-

ted habitats comes mainly from studies of isolated popu-

lations, but changes in population dynamics in edge

habitats may also have evolutionary consequences de-

spite not being isolated from patch interiors [28�]. Altered

top-down forces in edge habitats may primarily influence

insect evolution via selective pressures associated with

predation and reduced densities. Altered bottom-up

forces may occur via changes in plant intraspecific varia-

tion, which can then influence arthropod density, compo-

sition, intraspecific variation and even sexual phenotypes

and assortative mating [34–36]. Plants’ genotypic varia-

tion can be altered at edges by unique reproductive

dynamics. For instance, plants may exhibit high homo-

zygosity in edge habitats due to increased selfing rates in

response to both pollen and pollinator limitation [31,37].

Relative to outbred individuals, inbreeding may induce

physiological changes that negatively affect survival and

reproduction, and thus impact herbivores via reduced

resource quality. Inbreeding may also reduce tolerance

to herbivores, potentially exacerbating demographic

declines in low-density populations [38]. Alternately,

edges have been proposed to be hotspots of plant genetic

variation due to increased habitat heterogeneity and

distance-limited dispersal [39] and this has been shown

to be true at ecotones between biomes [3��].

Plants can also mediate indirect effects among arthropods

and influence eco-evolutionary dynamics [40]. For exam-

ple, changes in plant genotype resulting from directional

selection imposed by a single herbivore species may

impact resistance to other herbivore species [41], and

priority effects of different early season herbivores can

alter plant responses to herbivory and thereby affect

community arthropod composition (e.g. [42]). Changes

in plant genotypic variation in edge habitats compared to

core habitats may have important implications for insects,

but whether these effects are strong enough to alter
www.sciencedirect.com 
evolutionary trajectories between edges and interiors is

currently unknown.

It is also possible that effects of habitat fragmentation on

demography, resource availability, connectivity, and in-

terspecific interactions could alter social interactions

within and between the sexes. Yet, our understanding

of how habitat edges and fragmentation affect sexual

selection is limited [43��,44] and comes largely from

vertebrate systems [44], but insects with short generation

times present an ideal opportunity to study these ques-

tions (see [45] for a comprehensive treatment of global

change on sexual selection). Because sexual selection

decreases effective population size and can drive rapid

and divergent evolution of sexually selected traits, lead-

ing to speciation [46,47], it may be tied closely to the

persistence of edge populations. Sexual selection is large-

ly driven by the availability of mates, which habitat

fragmentation alters in two primary ways: reduced popu-

lation size or density and biased sex ratios within frag-

ments (because of demographic stochasticity or sex-

biased dispersal, e.g. [48–50]). In the simplest case, theory

predicts that the proportion of males unsuccessful in

competition and female choice is highest at high male

density [51] and male competition is most intense at

male-biased operational sex ratios (but see [52,53]). Fur-

ther, females can afford to be more selective when males

are readily available [54]. Thus, in fragmented habitats

with reduced mate availability and connectivity, we

might expect relaxed sexual selection to facilitate popu-

lation persistence, similar to island systems [55].

Encounter rates with competitors and natural enemies

also alter the nature and strength of sexual selection

[56,57], and as discussed above, interactions among these

species are likely altered in edge habitats. There is a rich

literature on evolutionary and plastic responses of sexu-

ally selected characters to natural enemies, including

decreased conspicuousness of sexual signals and behav-

iour, and relaxed female mating decisions under high

predation or parasitization [56,58]. Moreover, the link

between habitat fragmentation and rapid divergence of

sexual traits was recently made in Gambusia fish in Baha-

manian streams; genital shape and allometry repeatedly

diverged in fragmented locations [43��] due to decreased

predator density and increased conspecific density. Simi-

larly, altered parasitism in insect systems could drive

rapid evolution of signals that confer reproductive isola-

tion (e.g. [59]) in edge habitats. However, how altered

species interactions in edge habitats influences sexual

selection has not yet been investigated in insects.

Conclusions and perspectives
Studying species responses to habitat edges without a

community perspective is problematic because it is diffi-

cult to make sense of complex, variable community

responses. Yet one of the fundamental assumptions
Current Opinion in Insect Science 2016, 14:61–65
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within the edge literature is that a single species’ response

to an edge may ‘cascade’ throughout the community and

has the potential to impact all species connected through-

out a web of interactions. We suggest that habitat edge

responses may cascade both up and down multi-trophic

foodwebs and these altered species interactions likely

affect evolutionary processes, but these have so far not

been well studied. An expansion of edge theory to

improve its predictive power for community responses

is needed. Studies investigating the effects of edges on

linked trophic dynamics and foodwebs may help to fill

these knowledge gaps if they can elucidate the underly-

ing mechanisms that cause edge responses, and we sug-

gest that insects with short generation times present an

ideal opportunity to do so.
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