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Rapid technological advances and growing participation from amateur naturalists have made 
countless images of insects in their natural habitats available on global web portals. Despite advances 
in automated species identification, traits like developmental stage or health remain underexplored 
or manually annotated, with limited focus on automating these features. As a proof-of-concept, we 
developed a computer vision model utilizing the YOLOv5 algorithm to accurately detect monarch 
butterfly caterpillars in photographs and classify them into their five developmental stages (instars). 
The training data were obtained from the iNaturalist portal, and the photographs were first classified 
and annotated by experts to allow supervised training of models. Our best trained model demonstrates 
excellent performance on object detection, achieving a mean average precision score of 95% across 
all five instars. In terms of classification, the YOLOv5l version yielded the best performance, reaching 
87% instar classification accuracy for all classes in the test set. Our approach and model show promise 
in developing detection and classification models for developmental stages for insects, a resource that 
can be used for large-scale mechanistic studies. These photos hold valuable untapped information, and 
we’ve released our annotated collection as an open dataset to support replication and expansion of our 
methods.

Insects dominate the terrestrial fauna, and holometabolous insects, which undergo complete metamorphosis 
(e.g., beetles, moths and butterflies, flies, ants and bees, and some smaller taxa), represent 83% of all insects and 
~ 50% of all known animal species. Lepidoptera alone (moths and butterflies) comprise 10% of all described 
animals1. As a whole, insects compose the bulk of terrestrial animal biomass, collectively outweighing all 
terrestrial vertebrates, including humans and livestock. Insects largely form the base of the animal food web and 
provide substantial ecosystem services, including nutrient cycling, pollination, and pest control1. Unfortunately, 
evidence is mounting that overall insect biomass has declined with estimates from 30 to 50% over the last 20–50 
years and numerous studies indicate that the populations of many beneficial insects are likely to decline in the 
future2,3. A major research challenge is that multiple factors, such as changes land-use, climate, and agricultural 
practices, are difficult to tease apart, leading to a laundry list of stressors being referred to as “death by a thousand 
cuts”4. While the relative contribution of each stressor is likely to vary by region, to capture dynamics at the 
largest scales (even continental or global), data on the species of interest are required at those scales. The most 
widely available large-scale biodiversity datasets offer only occurrence data (species, location, date) of adults, 
and while this has helped researchers track range dynamics, they are not able to capture mechanistic processes 
at smaller scales5. For instance, the vast majority of large-scale Lepidoptera research is done using occurrences 
of adults, yet most individuals in nature are juveniles because they never emerge as adults, dying first from a 
variety of factors6. The juvenile stages of insects that undergo complete metamorphosis are egg, larvae, pupae, 
and adult (most other insects are hemimetabolous, with juveniles resembling adults). Of these earlier stages, 
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larvae (caterpillars for moths and butterflies) are the most apparent with eggs and pupae notoriously difficult to 
find. Insect larvae go through a distinct set of developmental stages, called instars. Tracking dynamics at each 
earlier stage will open a window for more mechanistic understanding of how the environment impacts growth 
and development of this critical group of insects. Here, we test the ability of computer vision to identify butterfly 
larvae to specific instars.

For butterflies in North America, the most iconic species is the migratory monarch butterfly (Danaus 
Plexippus). Monarchs have become a model system for understanding migratory insects in particular and 
butterflies in general. Globally, monarchs have a high public profile7 and currently are undergoing yearly review 
for potential listing under the United States (US) Endangered Species Act (ESA)8. The migratory monarch 
butterfly has two fairly distinct migratory populations in North America (Florida also hosts a large sedentary 
population), which have been declining since at least the mid-1970s in the east9 and since at least the mid-1990s 
in the west10. The best-known eastern migratory population covers the area east of the Rocky Mountains and 
migrates to central Mexican forests for overwintering. In the spring, adults that spent the winter in Mexico travel 
northward to the southern US, breed, and produce the next generation that moves further north, expanding 
throughout the Northeastern and Midwestern US and southeastern Canada where they produce 2–3 more 
generations11. In the fall, butterflies in the final generation of the year return to Mexico. The western migratory 
population inhabits the area west of the Rockies and overwinters in southern California along the Pacific coast. 
During the summer, they migrate up to the Rocky Mountain range.

The base data source for this research is iNaturalist (https://www.inaturalist.org), a photo upload platform 
which contains vast and growing numbers of timestamped, geolocated images; it surpassed 100  million 
observations in 202212. Monarch caterpillar photos are the most common on iNaturalist compared to other 
Lepidoptera (personal observation) and now comprise a rich and quickly growing data set. While many photo 
contributors may not know the name of the specimens they have photographed, a widespread effort to automate 
species identification using computer vision and deep learning has been highly successful at providing a source 
of species classification13. This is complemented by community-sourced identification verification by expert 
naturalists14. These photos hold valuable information about species’ ecology, development, and evolution, but the 
species are rarely classified or annotated for other observable characteristics (i.e., morphological or situational 
data). There are other platforms as well, including observation.org and flickr. These expanding resources make 
these photographs a still largely untapped resource for biodiversity and conservation research15. Indeed, the 
burgeoning field of “imageomics”, especially when paired with computer vision and deep learning, has the 
potential to transform the way we study the vast diversity on our planet16. Each species requires a tailored spatial 
and temporal scope to effectively track their population dynamics. In the case of eastern migratory monarchs11, 
understanding the dynamics of this single panmictic population9 could be vastly improved with developmental 
data throughout their breeding range in eastern North America.

Our goal is to assess whether computer vision can classify monarch caterpillars by their developmental instar 
using photographs uploaded by citizen scientists, a new application in the emerging fields of imageomics as well 
as “phenometrics” (observable features of organisms)15. More specifically, we also aim to train a deep-learning 
model that can accurately (1) localize caterpillars in a photograph and (2) classify caterpillars into their respective 
developmental stages, from instar 1 to 5. This novel process could allow for the tracking of developmental stages 
and other observable information on a continental scale; an invaluable data set on insect biogeography providing 
insights into many dynamics, including adaptability to climate or land use change and information on impacts 
of conservation actions. For imageomics to be a promising application in large-scale phenometrics research, 
differentiation between relevant classes must be apparent in visual representations17, which is possible for most 
caterpillars18 including for monarchs (Fig. 1). Photos uploaded to web portals are often classified or identified 
to the species level, rarely categorized by the insect’s specific developmental life stage or condition. When this 
information is available, for instance, from the “caterpillars of eastern North America project” on iNaturalist19, 
where all annotations are manual, it only specifies that the photo is a caterpillar rather than an adult, not the 
specific instar stage. We do note that certain Lepidoptera species are far more apparent at the caterpillar stage, 
especially those that develop gregariously in webs and are pest species, such as the fall webwork (Hyphantria 
cunea) and the eastern tent caterpillar (Malacosoma americanum), or species where highly apparent caterpillars 
wander widely, such as the wooly bear (Pyrrharctia isabella). Yet for the vast majority of Lepidoptera, adults are 
the most apparent.

With the growing popularity of convolutional neural networks (CNNs), their application in insect detection 
and identification has notably expanded in recent years. While the use of computer vision for insect detection 
is particularly prevalent in agriculture for pest management and control20, our focus is on conserving beneficial 
insects3, specifically butterflies, that are not only vital to agriculture but also important from a broader 
conservation perspective.

Multiple studies have shown the success of CNNs in identifying adult butterflies21. For example, 22–24reported 
models that were more than 85% accurate in identifying certain butterfly species.  25used the GoogLeNet 
pretrained CNN architecture and achieved an accuracy of up to 97% in identifying and classifying four species 
of butterflies. 26obtained a detection accuracy of up to 98% for a set of 10 species. From the image detection point 
of view, most research has focused on adult butterflies but not on more fine-scaled developmental stages, such as 
instars. The success of CNNs in identifying adult butterflies is partly due to their larger size and often charismatic 
wings; while many other insects are smaller, or have large variations of size within a species, and in those cases, 
detection accuracies often fall27–29. In our case, the body sizes of instars vary significantly, with the first instar 
(L1), ranging in length from 2 to 6 mm, being much more difficult to localize in photographs compared to 
the 5th (L5)  instar (25–45 mm) (Fig. 1). Our method is comparable to the approach used for locating and 
identifying ladybird beetles and identifying life history timing of fall webworm, using a two-step automated 
detector in iNaturalist photographs, which resulted in 92% accuracy by combining image processing and deep 
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learning techniques30,31. Note that this process was trained on adult insects and not their earlier developmental 
stages. To determine the tractability of creating a computer vision pipeline for locating butterfly caterpillars and 
identifying them to instar, we constructed a dataset of citizen scientist photographs of monarch caterpillars at all 
instar stages from iNaturalist and manually annotated both the location and instar stage in each photo to create 
a training dataset (Fig. 2).

Results
To evaluate the performance of the trained models in detecting and localizing caterpillars, we used the mean 
average precision (mAP) metric, the most common single metric used in modern object detection and 
classification32. Because this metric depends on the choice of intersection-over-union (IOU) threshold chosen 
for a positive localization (detection), we use two versions of it: the value with the IOU threshold set to 0.50 
(mAP50) and the average value across a range of IOU thresholds from 0.50 to 0.95 (mAP50-95). Overall, all four 
model sizes demonstrated high accuracy in detecting and localizing caterpillars (e.g., mAP50 ~ 0.95 and 0.94 in 
validation and test sets, respectively, see Table 1). The highest values of mAP50 for the hold-out test set (the most 
unbiased measure of model performance) were achieved by the medium and large models, while the highest 
values of mAP50-95 were achieved by the large and extra-large models. Balancing resources and performance, 
we conclude that the large model has the best overall performance. These findings align with previous research 
by33, emphasizing the relatively higher performance of the YOLOv5 large version at a reasonable speed and 
computational cost.

Because training neural networks is a stochastic process, it is important to select a sufficient number of 
training epochs to fully optimize the model and assess whether it is overfitting, meaning it performs well on 
the training data but less effectively on a hold-out test set34. At the end of training, all four model sizes were 
used to test the model on the test dataset. Here we present results of the loss value function from the YOLOv5 
large model (Fig. 3). This showed stable mAP50 and mAP50-95 values for the validation set, indicating that 
more training epochs are not likely to improve the models’ performance. For example, in all loss graphs, during 
training, the gradient descent initially increases rapidly, then gradually slows down, stabilizing after 200 epochs. 
Also, both mAP50 and mAP50-95 of the best trained model evaluated on the holdout test set are very similar to 
the corresponding values evaluated on the validation data set. This indicates that there was no model overfitting. 
Despite this high performance, all of the models faced some challenges in accurately identifying L2 larvae, often 
confusing them with L3s. The model that we selected here, YOLOv5l, demonstrated up to 95% accuracy in 
classifying L3 images and 94% accuracy in identifying L5 images in the validation set (Fig. 4a). In general, the 
prediction accuracy for all classes was above 0.87. However, the model encountered challenges when classifying 
L2, where 11% of the images were erroneously predicted, confusing L2 with L3 larvae.

Comparatively, when tested on the test sets (Fig. 4b), there were slight reductions in the model accuracies. 
The prediction accuracy ranged from 81% for L4 to 94% for L5. The model exhibited some misclassifications. In 
13% of the cases, it mistakenly labeled L1 as L2, and similarly, it inaccurately identified L2 as L3. Additionally, 
the model returned some false positives (incorrect prediction of instars in background areas), although this 

Fig. 1. Monarch butterflies (adult shown to right) proceed through five developmental instars as juveniles. In 
the field, size is a useful factor in instar-identification, combined with other morphological differences that can 
be easily learned. However, since photograph sources almost never have scale bars and background features 
that could be used for scale, such as host plant leaves, vary a great deal in size, only morphological features can 
be used to distinguish caterpillar stages using field photographs. Photo credit: Karen Oberhauser (printed with 
permission).
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mAP50 (valid) mAP50-95 (valid) mAP50 (test) mAP50-95 (test)

Small 0.921 0.812 0.925 0.814

Medium 0.943 0.842 0.947 0.853

Large 0.951 0.862 0.947 0.855

Extra-large 0.945 0.864 0.939 0.861

Table 1. Best trained model performance (mean average precision, mAP) on the validation and hold-out test 
sets.

 

Fig. 2. Monarch caterpillars progress through five developmental stages (instars), depicted in panels (a–p). 
These images are representative samples of 1 photos used in the test set. Our team of experts annotated each 
image, providing both the caterpillar’s location (bounding box) and its respective instar assignment. Photo 
credit: (a) 25,650,687 © Norman Murray, all rights reserved, (b) 31,420,666 © Rodrigo Solis Sosa, some rights 
reserved (CC-BY-NC), (c) 15,569,693 © Kim Smith, some rights reserved (CC-BY-NC-ND), (d) 31,790,764 
© Emma Horrigan, all rights reserved, (e) 6,909,852 © Mark Kluge, some rights reserved (CC-BY-NC), (f) 
19,541,839 © Even Dankowicz, some rights reserved (CC-BY), (g) 52,506,640 © Lyell Slade, lls, some rights 
reserved(CC-BY-NC), (h) 69,162,508 © Michael (Mike) Ostrowski, some rights reserved (CC-BY-SA), (i) 
33,171,148 © David Weisenbeck, some rights reserved (CC-BY), (j) 78,138,914 © Ian Shelburne, all rights 
reserved, (k) 121,456,617 © Chris Buelow, some rights reserved (CC-BY-NC), (l) 41,213,164 © Lauren J. 
Simpson, some rights reserved (CC-BY-NC), (m) 38,839,028 © Meghan Pierce, some rights reserved (CC-
BY-NC), (n) 18,690,481 © Royce J. Bitzer (iowabiologist), some rights reserved (CC-BY-NC). Each number 
corresponds to an iNaturalist observation ID, accessible via the base URL  h t t p s : / / w w w . i n a t u r a l i s t . o r g / o b s e 
r v a t i o n s / f o l l o w e d     by the respective observation number. The photos are printed with permission from the 
photographer.
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varies by the IOU threshold chosen. At a confidence threshold of 0.25, more than 20% of the photos had the true 
background mistakenly identified as containing L2, L3, and L4 (Fig. 4b). This could be improved with better 
image quality and more images for training35.

We also evaluated performance using the F1 score, which is the harmonic mean of precision and recall, and 
serves as a comprehensive index for evaluating model performance across different confidence thresholds36. 
Upon analyzing the F1 curves, we observe that L1 and L5 exhibit the highest F1 value, indicating strong model 
performance in accurately classifying these instar stages (Fig. 5). Conversely, L2 and L3 demonstrate relatively 
lower F1 evaluations, suggesting more difficulty in identifying these developmental stages. The combined 
performance across all instar classes, YOLOv5l achieves F1 score of 0.9 at a confidence level of 0.81. A smoother 
curve indicates higher prediction confidence and a lower occurrence of False Positives (FP) and False Negatives 
(FN). Specifically, the curves exhibit smoothness for L1 and L5, while they show more fluctuations for L2 and 
L3. The model maintains a high F1 score across a broad range of confidence thresholds for L1 and L5. Therefore, 

Fig. 4. The confusion matrix displays the classification accuracy for the fully trained large model, on (a) the 
validation set (left) and (b) the hold-out test set (right). The validation set comprised 383 (18%) images, while 
the holdout test set contained 213 (10%) images of instars from categories 1–5.Monarch caterpillars (larvae) go 
through five developmental stages, known as instar 1 to instar 5. The size ranges for each stage are as follows: 
1st instar (2–6 mm), 2nd instar (6–9 mm), 3rd instar (10–14 mm), 4th instar (13–25 mm), and 5th instar 
(25–45 mm) (for details, see Supplementary A51). In instances where the predicted label matches the true label, 
the value along the diagonal becomes 1.

 

Fig. 3. Evolution of the box loss, object loss, class loss, mAP50, and mAP50-95 for the large model on the 
validation set, during the 256 epochs of training. Box loss represents the mean of IoU loss, objectness loss 
represents the mean of the object detection loss, and classification loss represents the mean of classification loss 
in the validation dataset. In all three metrics of losses, the loss curves become stable, with small fluctuations 
after about 200 epochs. This means, after about 200 epochs the model is fully trained, indicating that further 
epochs are not likely to improve performance. Based on this, we trained the model with 256 epochs.
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it is evident that the models encountered challenges in accurately classifying L2 and L3 larvae, but demonstrated 
better performance with increased confidence and precision when classifying L1 and L5.

Next, we used the trained YOLOv5l model to perform inference (detection and localization) of instars on each 
of these images in the test set (Figs. 2 and 6). For 158 (74%) of these images, the model detected a single instar 
of the correct class; for 13 (6%) of these images, the model detected a single instar of the wrong class; and for 42 
(20%) of these images, the model identified multiple instars, despite each image containing only a single instar. 
The confidence scores of the model were relatively high when it detected the correct class (including multiple 
detections where the most confident one was correct), with a mean of 0.949 (SD = 0.047). When the model 
detected the incorrect class, the confidence scores were lower, yet still high with a mean of 0.911 (SD = 0.061).

One notable challenge of YOLOv5l was ensuring precise instar localization accuracy in the photograph. 
The model struggles more with images featuring very small instars or those that occupy a minimal area in the 
photograph, because lower resolution images often present challenges in object (adult mosquito) detection and 
classification, as highlighted by28,37. To explore this, we first calculated the number of pixels within the manually 
labeled instar bounding box for each image in our hold-out test set, as a way to quantify how “big” or “small” the 
instar is within an image. For the first two sets of images (a single detection) we calculated the IOU of the manual 
bounding box and the model prediction, and plotted the result against the number of pixels within the manual 
bounding box (see Fig. 7). From this it is clear that lower localization accuracy (smaller IoU) is associated with 
smaller instars (fewer pixels in the manually annotated bounding box), demonstrating that the model does 
indeed perform less effectively with smaller objects.

Discussion
Deep learning techniques have found a wide range of applications in recent years, with several recent studies 
using such techniques to identify adult butterfly species22,23,25,38. Also, advancements have been made in 
detecting and classifying insect instar stages, particularly for agricultural pests20. Deep learning techniques 
have been successfully applied to classify bagworm instars, providing high accuracy and valuable data for 
pest management39,40. Similarly, YOLO-based deep learning frameworks have been used to detect and classify 
whitefly life stages in soybean crops, demonstrating the potential of these methods for pest control41. However, 
to date, we are unaware of any studies that have used deep learning for identifying and classifying butterfly 

Fig. 5. F1 score curve of a YOLOV5 large weight model. F1 score is a measure of model’s accuracy and it is 
the harmonic mean of precision and recall. Higher F1 score signifies superior performance, with the optimal 
threshold for the model prediction identified where the F1 score peaks. Notably, this YOLOv5 large model 
averaged for all classes achieves significantly high confidence (0.9), while concurrently optimizing the F1 (0.81) 
score.
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caterpillar instars, particularly those of monarchs. Indeed, a few applications we have seen are for a select 
number of pests42,43, including aphid nymphs - but it is worth noting that these do not undergo complete 
metamorphosis, so the juveniles look very similar to the adults44. To address the gap in application of these 
tools, we developed a deep learning model based on the YOLOv5 framework which is capable of localizing 
and categorizing monarch instars into their five developmental stages, L1-5. Monarch butterflies are one of the 
most widely studied and popular insect species. Unfortunately, their population is declining9. Categorizing their 
larval developmental stages allows a more mechanistic data set for range-wide analysis of the factors influencing 
population dynamics45. Our study could easily be adapted to identify and classify the instars of other butterflies; 
even though species show great morphological differences, monarchs are typical of the other species in its 
subtribe (Danainae) in terms of the progressive changes in instar appearance, and this is true of many other 
groups18.

The training photographs used in this study were annotated and classified by coauthors Oberhauser, Ries, 
and Neupane, (see Methods and the rules outlined in Appendix A). Oberhauser is one of the leading experts on 
monarchs and runs the monarch larva monitoring program (mlmp.org) where hundreds of volunteers have been 
trained to identify monarch caterpillars in the field to instar46. Ries and Neupane have also published widely on 
the monarch47–49. It can be difficult to accurately classify caterpillars’ developmental stages, even for experts, 

Fig. 6. YOLOV5l model detections and classifications of monarch instars (a–p). The true expert classified 
labels are displayed in Fig. 2. Predicted instar category and the confidence values are as indicated. Photo 
credit: (a) 25,650,687 © Norman Murray, all rights reserved, (b) 31,420,666 © Rodrigo Solis Sosa, some rights 
reserved (CC-BY-NC), (c) 15,569,693 © Kim Smith, some rights reserved (CC-BY-NC-ND), (d) 31,790,764 
© Emma Horrigan, all rights reserved, (e) 6,909,852 © Mark Kluge, some rights reserved (CC-BY-NC), (f) 
19,541,839 © Even Dankowicz, some rights reserved (CC-BY), (g) 52,506,640 © Lyell Slade, lls, some rights 
reserved(CC-BY-NC), (h) 69,162,508 © Michael (Mike) Ostrowski, some rights reserved (CC-BY-SA), (i) 
33,171,148 © David Weisenbeck, some rights reserved (CC-BY), (j) 78,138,914 © Ian Shelburne, all rights 
reserved, (k) 121,456,617 © Chris Buelow, some rights reserved (CC-BY-NC), (l) 41,213,164 © Lauren J. 
Simpson, some rights reserved (CC-BY-NC), (m) 38,839,028 © Meghan Pierce, some rights reserved (CC-
BY-NC), (n) 18,690,481 © Royce J. Bitzer (iowabiologist), some rights reserved (CC-BY-NC). Each number 
corresponds to an iNaturalist observation ID, accessible via the base URL  h t t p s : / / w w w . i n a t u r a l i s t . o r g / o b s e 
r v a t i o n s /     followed by the respective observation number. The photos are printed with permission from the 
photographer.
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without a clear photograph that displays key morphological features. While our model may improve through 
iterative training and potentially identify features missed by human annotators50,51, there is also a risk that 
errors in the manual annotations could be propagated into the model and affect its accuracy. This highlights the 
importance of carefully checking the annotations, adding more training photos when possible, and iteratively 
improving the model to minimize potential bias or inaccuracies. Our results are comparable to studies using 
deep learning for mosquito larvae (e.g., up to 97%, as in52,54 and locusts (e.g., up to 96%)55.

Accurately identifying caterpillar developmental stages provides a novel data set for understanding their 
ecological role and supporting conservation efforts by making it possible to examine phenotypical differences 
in different environments. The YOLO framework efficiently and accurately located caterpillars in photographs 
and identified their developmental stages (Figs. 2 and 6). This technology is particularly valuable for platforms 
like iNaturalist, where large datasets can be quickly processed with annotations that provide valuable ecological 
and evolutionary data at the individual scale. and compile. While, other platforms provide photographs of 
caterpillars; (for instance observations.org hosts thousands of butterfly photos, including caterpillar photos) 
there is currently no way to filter by life stage (observation.org); indeed, this is also true of most iNaturalist 
Lepidoptera photos. However, adding a step where the algorithm classifies each photo to life stage would be a 
trivial task for a computer vision algorithm56. Implementing models like this is crucial to advance large-scale 
mechanistic research, a substantial recent advancement57. These types of processes could be developed into 
pipelines that provide important information about developmental stages, their condition and, combined with 
appropriate environmental data, identify key stressors. Such stage-specific data may be especially useful for 
conservation biologists, because they can increase the accuracy of population viability models - which are often 
used in species management. Such data is also critical for research on insectivores who are directly impacted by 
the dynamics of herbivorous insects. Ornithologists in particular are interested in caterpillar dynamics, because 
caterpillars are the primary food source for insectivorous birds58 and several studies have recently identified 
insect declines as a possible reason for bird declines59. In light of this, further mechanistic research remains 
feasible even by being able to group larvae by their adjacent developmental stages (for example, 2/3 or 4/5).

Fig. 7. IOU of the manual bounding box and the model-predicted bounding box, as a function of the number 
of pixels in the manual bounding box. Images are taken from the hold-out test set (see text).
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Among the models evaluated (YOLOv5 small, medium, large, and extra-large), YOLOv5 large emerged as the 
top performer in terms of mAP (Table 1). The model’s average prediction accuracy was above 0.94 for moderate 
localization accuracy (mAP50) and above 0.86 for high localization accuracy (mAP50-95). This is in agreement 
with the findings of60 who reported comparable performance for various YOLO versions for small insect and 
pest detection. The mAP scores for identification of various instar categories displayed differences (above 92% 
for all instar categories, Fig. 5). It is possible that the model performance could be improved if more training data 
were included in the future. The model achieved a high accuracy rate, correctly identifying and classifying 85% 
of the images (42 out of 50). To visually demonstrate the predictions of the models, we show 14 images from the 
holdout test set (Fig. 6), which displays the predictions made by the trained YOLOv5l model, with the associated 
confidence value of the prediction.

Another notable strength of the trained YOLOv5l model is its ability to confidently detect instars in many 
of the images, with 100% certainty (not shown), while in many other cases, the certainties were above 95% (for 
example, in 10 out of 14 photos in Figs. 2 and 6). However, there were certain instances where the model made 
incorrect classifications. L2/3 were mistakenly classified as L3/2 (not shown), and L4/5 was misclassified as L5/4 
(Fig. 6j). Those errors occurred with relatively low confidence values, reaching up to 0.4 in most cases and up to 
0.71 in one instance, suggesting that the model’s performance could benefit from a larger training dataset. We 
observed that the model tends to have lower accuracy in localizing instars in images with smaller sizes (fewer 
pixels). This raises the question of whether the model performs better when dealing with higher resolution 
images (Fig. 7). Notably, accuracy at later instars likely has more opportunity to provide more informative data. 
Not only do L4 and L5 take up more space in an image compared to L1-L3 and thus provide more clarity to 
annotate the photos. Further, for biological reasons, annotations of younger instars are likely not as meaningful 
as for L5s; monarch caterpillars only spend 2–3 days in each of the earlier instars (assuming a consistent, 
comfortable temperature throughout), where most errors occur (L1-L4), whereas they spend 6 days (40% of the 
full caterpillar lifespan) as an L561.

During this process, it took each of our expert annotators approximately 4–5  h to identify, classify, and 
annotate 200 photos. Images of L1-3 were generally smaller than L4-5, making them more difficult to locate 
in the images, and distinguishing between L4 and L5 was challenging even for experts. In such a situation, a 
precise computer vision model for classification would be highly valuable, especially since an iterative cycle 
of modeling and annotation of more photos will continue to increase automated annotation accuracy. Indeed, 
the machine algorithm may even find features that human annotators have not discovered to help distinguish 
between instars. This means that the identification and classification rules we adhered to (see Appendix A) can 
be improved by future research.

Our results showed that identification of caterpillars to their developmental instars can provide a potentially 
transformative source of data for entomological research on moths and caterpillars. These are among the most 
highly photographed insects in biodiversity photo upload platforms such as iNaturalist62. This exponentially 
growing dataset provides a flow of data that far outpaces our ability to annotate photos manually, and the 
development of a pipeline to locate and identify caterpillars to their developmental stage would be of great 
value to entomologists studying insect ecology and conservation. Further, this first step opens the possibility 
of further classifying images for other ecologically relevant information such as color morphs (indicative of 
thermal adaptation), host plant or co-located species (indicative of species interactions) and potentially many 
other factors, so has potentially unlocking a treasure trove of ecological and evolutionary data63.

Methods
For this work we selected a one-stage deep learning object identification framework, You-Only-Look-Once 
(YOLO). YOLO is a popular object detection algorithm that has been widely used for detecting (“localizing”) 
objects in images and videos64–67. YOLO is computationally more efficient and has relatively higher detection 
accuracy compared to other CNN-based models64,65,68. In particular, it has been used successfully in detecting 
small objects, such as insects, which are challenging to detect with other methods64,69,70.

To effectively apply computer vision techniques like YOLO for object detection, it is essential to use accurately 
labeled and classified photographs for model training. Incorrectly annotated photos may lead to a decrease 
in model accuracy. Here, we relied on our expert knowledge of monarchs to identify and classify caterpillar 
photographs by instar, which were then used as the training data (details in the Discussion section), (specifically 
co-authors Oberhauser, Ries, and Neupane; details in the Discussion section). Oberhauser in particular has 
trained volunteers to identify monarch caterpillars to instars in the field since 199936.

The photos used in this study were obtained from the citizen science-based program iNaturalist. We 
downloaded 2,562 photographs taken within the United States and tagged by citizen scientists as monarch 
caterpillars (Fig. 2). Most photos contained only one caterpillar, but some featured multiple caterpillars, often 
in multiple developmental stages. The caterpillars were mostly present in natural settings such as plant leaves, 
though some were photographed in artificially reared laboratory backgrounds. Image quality and resolution 
varied depending upon the camera used and exposure details. To ensure the accuracy of the labeling of the 
photos, we relied on our expert team members and followed a standard protocol of categorization (detailed in 
Supplementary A) to manually categorize instar photos into five categories, L1-L572. Images with caterpillars of 
multiple species were discarded. Photographs were manually annotated using an online web portal  h t t p s : / / w w w 
. m a k e s e n s e . a i     , enclosing identified caterpillars within tight rectangular bounding boxes and recording the instar 
(as displayed in Fig. 2). From these annotated photographs, 425 were randomly selected from each category 
(L1-L5) to create a balanced training set. Of the resulting 2,125 photographs, 1,529 (72%) were used for training, 
383 (18%) were used for validation, and 213 (10%) were held out for final testing. All photos used in this study 
have copyrights that allow sharing for non-commercial purposes and upon request we provide links to all those 
photographs for further testing and analysis (contact corresponding author).
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Model framework
We selected YOLO version 5 for our study. YOLOv5 is a deep learning model which has been steadily improved 
in recent years36,64,65. It has become increasingly popular due to its user-friendliness and its capability to detect 
small objects accurately and efficiently73,74. This makes YOLOv5 particularly suitable for the detection of larvae 
in their early developmental stages (L1 and L2) which are generally much smaller in the photo frame compared 
to larger instars.

The YOLOv5 model structure is composed of five components: Input, Backbone, Neck, Head and Prediction. 
The “Input” component is where the images are supplied as input. The “Backbone” component is a convolutional 
neural network which generates various image features at different spatial resolutions. The “Neck” component 
combines the image features and forwards them to the “Head” component. The Head component consumes 
the features to generate the predicted bounding boxes and the predicted categories. Finally, the “Prediction” 
component combines the predicted bounding boxes and the predicted categories and outputs the result75,76.

Our model architecture uses an input image size of 640 × 640 pixels and three color (red, green, and blue) 
channels, which is resized into four images of size 320 × 320 pixels of the three-color channels. This feeds into a 
convolutional layer followed by a batch normalization layer and a concatenation layer. The final output includes 
information about 5 object types, the likelihood of each type, and the position of each object in the image. In 
other words, the output gives the predicted bounding box and classification categories. For more information on 
the model architecture, please refer to77.

YOLOv5 has been shown to be superior to its predecessors in terms of image processing, frames per second 
(FPS), and its mean average precision (mAP). For example, v5 can reach an FPS speed of up to 140, while 
v4 can only reach 50 (Yan et al., 2021). While this high frame rate is desirable in some settings (such as live 
video feeds) it was not crucial in the current work. There are multiple versions of YOLOv5 available, including 
small (YOLOv5s), medium (YOLOv5m), large (YOLOv5l), and extra-large (YOLOv5x). These versions have 
an increasing number of model parameters from small to extra-large, offering an increasing ability to model 
complex image data at the cost of progressively longer training times75,76. In this study, all four of these model 
versions were tested.

Modeling platform
The model code was written in the Python programming language (v3) using the yolov5 library78 and the 
Pytorch deep learning framework. All code was run on Google Colab, a cloud service platform commonly used 
for machine learning research, with data stored on Google Drive. NVIDIA A100 GPUs with CUDA 12.0 were 
used for the calculations. We trained the model for 256 epochs with a batch size of 32, automatic training data 
augmentation, and default hyperparameters. The average epoch times were 5, 8, 11, and 17 s for small, medium, 
large, and extra-large models. After training was complete, the model weights that performed the best on 
predicting the validation set were evaluated on the hold-out test set, using automated test-time augmentation79.

Data availability
All the image annotation data link is made publicly available for research purpose.  The python code is attached 
on separate files. For further needs contact corresponding author: nn343@georgetown.edu.
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