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A B S T R A C T   

Epidemiological data often include characteristics such as spatial and/or temporal dependencies and excess zero 
counts, which pose modeling challenges. Excess zeros in such data may arise from imperfect detection and/or 
relative rareness of the disease in a given location. Here, we studied the spatio-temporal variation in annual Lyme 
disease cases in Virginia from 2001-2016 and modeled the disease with a spatio-temporal hierarchical Bayesian 
model. Using observed ecological and environmental covariates, we constructed a predictive model for the 
disease spread over space and time, including spatial and temporal random effects. We considered several 
different models and found that the negative binomial hurdle model performs the best for such epidemiological 
data. Among the various ecological predictors, the North-South (V component) of winds and relative humidity 
significantly contributed to predicting the Lyme cases. Our model results provide important insights on the 
spread of the disease in Virginia and the proposed modeling framework offers epidemiologists and health pol-
icymakers a useful tool for improving disease preparedness and control plans for the future.   

1. Introduction 

Spatio-temporal count data, such as cases of infectious and/or rare 
diseases, often contain a large number of zeros. In reality, these zeros 
could be true zero counts (also called structural zeros) or they could be 
generated due to the data collection process and imperfect detection of 
cases (also called sampling zeros). When modeling such data, therefore, 
these zeros should not be ignored. Previous studies have shown that 
standard probability models (e.g., Poisson, Binomial, and Negative- 
Binomial) do not accurately model such data (Arab, 2015; Fang et al., 
2016). The class of zero-modified models designed to handle such cases 
of excess zeros include hurdle models (Cragg, 1971; Mullahy, 1986; 
Hilbe, 2014) and zero-inflated models (e.g., zero-inflated Poisson; 
Lambert, 1992; Welsh et al., 1996). The main difference between hurdle 
and zero-inflated models is in the process that generates zeros; a hurdle 
model assumes that all the zeros are generated from a zero-generating 
process and all remaining observations (non-zero counts) are gener-
ated from a counting process, while the zero-inflated model assumes a 
mixture of two processes where one generates zeros only and the other 
generates both zeros and non-zeros. More specifically, zero-inflated 
models consider zeros to be originated from two sources: structural 
zeros (generated due to structural reasons, e.g., absence of a disease in 

an area) and sampling zeros (may arise due to chance or perhaps as a 
function of sampling procedures such as inability to perfectly detect a 
phenomenon), while hurdle models only consider structural zeros and 
assume a structural difference between zero and non-zero values (e.g., 
zeros correspond to non-prevalence of Lyme disease in an area while 
non-zero values represent the count of Lyme cases where and when 
present). Considering both of these approaches to modeling data with 
excess zeros, here we develop a Bayesian hierarchical model to model 
the confirmed cases of Lyme disease. 

In recent decades, Lyme disease has been on the rise in the U.S. 
(Piesman, 2006; Hoen et al., 2009; Khatchikian et al., 2015), and Vir-
ginia has not been an exception. In 2001, there were a total of 100 Lyme 
cases in Loudoun and Fairfax counties (two highly populated counties in 
Northern Virginia), whereas the number of cases increased to 294 in 
2016. Fig. 1 displays maps of the confirmed cases of Lyme disease in 
2001 (Fig. 1a) and 2016 (Fig. 1b). This disease has also become preva-
lent in parts of Virginia where it used to be rare (Lantos et al., 2015). The 
number of reported cases in southwestern regions of the state (as in 
Wythe, Pulaski, Montgomery, Carroll, and Floyd counties) increased 
from zero in 2001 to 200 in 2016. Given the complex nature of this data, 
we consider the zero-modified modeling framework to model the spatial 
and temporal expansion of the disease. We test both hurdle and 
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zero-inflated models also because the increases in the disease cases may 
be due to improvements in diagnosis or reporting of the disease (Bor-
germans et al., 2015; Waddell et al., 2016; Sadilek et al., 2020). 

Chen et al., 2006 modeled the distribution of Lyme disease in New 
York from 1990-2000 using a Bayesian hierarchical framework. They 
compared the fit of various probability models (Poisson, zero-inflated 
Poisson, and negative binomial). The negative binomial model pro-
vided the best . Patterns of the disease distribution were found not to be 
random but clustered. Likewise, several other studies arrived at similar 
conclusions for disease distributions in Virginia (Li et al., 2014 studied 
data for 1998-2011; Lantos et al., 2015a and b studied data for 
2000-2014). 

Arab (2015) developed a spatio-temporal model for the confirmed 
cases of Lyme in Illinois from 2007-2011. The study used Poisson and 
negative binomial models as well as their zero-modified versions and 
concluded that the zero-Inflated Poisson and Poisson hurdle with a 
regression model for the zero-inflation probability provided the best fit 
for the data. Here, following the hierarchical Bayesian modeling 
approach proposed by Arab (2015), we develop a spatio-temporal model 
for the confirmed cases of Lyme in Virginia. We focus on the choice of 
the probability distribution that best describes the data. Finally, we 
conduct a model comparison among various possible models to find the 
“best” model. 

Lyme disease is caused by the bite of nymphal or adult ticks (genus 
Ixodes) that carry bacteria, Borrelia burgdorferi sensu lato (Tugwell et al., 
1997). Green vegetation is considered the primary habitat of such ticks. 
As a proxy to the habitat availability, researchers often use the 
Normalized Difference Vegetation Index (NDVI, Estrada-Peña, 2002; 
Brownstein et al., 2005; Kalluri et al., 2007; Barrios et al., 2012). 
Following these findings, we included the effect of green vegetation in 
our model as a potential predictor that may explain the disease vari-
ability. In addition to NDVI, we included several environmental vari-
ables, described in the next section, that are often related to the disease. 

2. Data 

We used the annual confirmed cases of Lyme disease in Virginia 
counties and cities from 2001-2016. This data is available at the county/ 
city level from the Centers for Disease Control and Prevention (CDC, 
2018). We eliminated four counties (Arlington, Bedford, Bland, and 
Highland) that did not have enough data related to one of our predictors 
(the deer population index). We considered 3 cities (Chesapeake, Suf-
folk, and Virginia Beach) and 91 counties, with a total of 1504 obser-
vations. The data reported by the CDC only includes confirmed cases of 
Lyme (there is no data available for unreported and unconfirmed cases). 
Consequently, the results of our analysis should be interpreted accord-
ingly and, therefore, it could be inherently impacted by the data 
collection mechanism including any issues of diseases diagnosis and 
reporting (i.e., access to healthcare, socio-economic factors, variability 

in the quality of care and diagnostics, among others). 
Across all 94 cities/counties, there are 781 observations (out of a 

total of 1504) with non-zero confirmed cases of Lyme diseases from 
2001-2016. Fig. 2 (a, b) displays the frequency and map of the disease 
distributions over the study period. The excessive zero counts contained 
in the data are evident in Fig. 2. There were 723 observations with zero 
cases of Lyme, and this may contain the absence of the disease and 
possibly unreported/unconfirmed cases, too. Likewise, there were 682 
cases between 1 and 25 counts and frequency abruptly tapers down to 
one for intervals between 275 and 300. A few counties/cities display 
relatively high cases. Some northern counties (Loudoun, Fairfax, and 
Prince William) display a total of up to 3000 cases during the study 
period. These counties are also the top three most densely populated 
counties in Virginia. Similarly, there is another cluster of counties in the 
southwestern region that includes Montgomery, Pulaski, and Floyd 
counties, which showed up to 1000 cases over the period. In general, 
counties with a large number of cases are located in the northern re-
gions. Southern counties have relatively low or zero counts (e.g., Lee and 
Scott counties in the southwest, and Southampton and Greenville 
counties in the southeast). 

In order to develop a useful and ecologically meaningful modeling 
framework, we considered the effect of several different environmental 
variables (summarized in Table 1). Previous studies have shown that the 
disease-causing bacteria’s activity increases with the increase in atmo-
spheric humidity (Vail and Smith, 2002; Perret et al., 2003; Moore et al., 
2014; Bennet et al., 2006). Following this, we incorporated relative 
humidity in our model. Studies have also shown that various species of 
deer serve as hosts of the disease-carrying ticks. The incidence of Lyme 
was relatively higher in regions with higher deer population (Shapiro 
et al., 1992; Goldstein et al., 2001; Yabsley et al., 2005; El Khoury et al., 
2012; Levi et al., 2012). While deer population density is an important 
predictor of Lyme incidence (Shapiro et al., 1992), a deer population 
index is not available at an appropriate scale in Virginia. Therefore, we 
used data on antlered buck kill per square mile of estimated deer habitat 
provided by Virginia’s Department of Game & Inland Fisheries as a 
proxy for the deer population. Several other studies have shown that the 
background wind circulation plays a major role in transporting 
vector-borne diseases (Olsen et al., 1995; Scott and Durden, 2009). 
Taking this into consideration, we incorporated wind as a predictor in 
our model. In addition, we also included precipitation and temperature 
as predictor variables. 

We extracted environmental predictor variables from available ob-
servations or reanalysis based on the following procedure: first, we ob-
tained the centroid of each county. Next, we created averaging regions 
centered at the county centroid. Rather than extracting a value that 
corresponds to the county centroid, we chose to average the values that 
lie in the enclosed region between centroid longitude ± 0.1◦ and latitude 
± 0.1◦. With an approximation of 1-degree latitude/longitude to equal 
about 100 km within the latitudes that span Virginia (~ around 38◦N, 

Fig. 1. Confirmed cases of Lyme disease in Virginia in (a) 2001 and (b) 2016.  
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https://www.usgs.gov/faqs), 0.2 ◦ equals to about 20 km (We selected 
this area as a county representative because most counties have land 
areas greater than 400 km2; these regions were well within county ge-
ographies and avoid the problem of overlapping especially for the 
smaller counties/ cities). Then, for these regions, we averaged and 
extracted the environmental covariates on a monthly timescale. 

Surface temperatures (T, ◦C), relative humidity (RH, %), precipita-
tion (P, mm/day), and winds were obtained from the North American 
Regional Reanalysis (NARR, Mesinger et al., 2006). NARR is available 
from 1979 to present at 32 km spatial and 3-hourly temporal resolutions, 
and 3-hourly values are interpolated to monthly mean. The reanalysis 
precipitation values are assimilated using observations. We included 
both Meridional (V-component, wind component along latitude, m/s) 
and zonal (U-component, wind component along longitude, m/s) wind 
components in the model to separately model the potential effects of the 
latitudinal and longitudinal components of wind. These 5 types of 
environmental variables were averaged for each month, providing 60 
predictor variables. 

We used MODIS (Moderate Resolution Imaging Spectroradiometer) 
Aqua (Instrument: MOD13Q1)/ Terra (Instrument: MYD13Q1 product) 
satellite Normalized Difference Vegetation Index (NDVI) to estimate the 
monthly surface greenness index (Huete et al., 1999). NDVI is available 
at 250-m spatial and 16-day temporal resolutions from 2000 to present. 
This index ranges from 0 (no vegetation) to 1 (green vegetation); values 
are atmospherically corrected, cloud-free, continuous, and calculated 
from surface reflectance values. We extracted this index for each of the 
county/city centroids, or the nearest land point in cases where the 
centroid is over water. Monthly average NDVI indices provided 12 
predictor variables. 

Deer population index, defined as antlered buck kill per square mile 
of estimated deer habitat, is used as a proxy for relative deer abundance. 
This (obtained from Virginia’s Department of Game & Inland Fisheries) 
is based on reports of bucks killed during the deer hunting seasons for 
major deer management units, collected at the county level from 2001- 
2016. Many cities in Virginia as well as Arlington County do not have 

deer management units; therefore, there is not enough data to calculate 
this deer population index in these areas. Consequently, we eliminate 
these counties/cities from our analysis. 

3. Model 

3.1. Model selection 

Many counties had zero counts, which poses a modeling challenge in 
choosing an appropriate and realistic probability distribution for the 
data. We considered the popular probability model choices for count 
data namely, the Poisson, the negative binomial models, and their zero- 
modified versions. In particular, we compared the fit of the following 
probability models to the data: negative binomial, Poisson, hurdle 
Poisson, hurdle negative binomial, zero-inflated Poisson, and zero- 
inflated negative binomial. Below, we briefly review the negative 
binomial and hurdle negative binomial models that are commonly used 
for modeling over-dispersed data with excess zeros. 

3.1.1. Hurdle models 
A hurdle model (Hilbe, 2014) consists of two components: the first 

component is a binary component that models the presence/absence 
using a logistic regression model for the probability of a zero count. Note 
that we follow a parameterization that considers a non-zero value as a 
failure (0) whereas a zero count is treated as a success (1). The second 
component is a zero-truncated component, which generates non-zero 
values. In this component, using a generalized linear model approach, 
the observed counts that are greater than zero are modeled. All the zero 
values are removed in the truncated component of the model. 

Therefore, a hurdle count model may be described as a mixture of a 
count generating distribution and a zero-generating process. All the 
zeros are generated via just one process that assumes the zeros are 
“structural”, in our case, it means that Lyme disease is absent and, 
therefore, the case count is zero. For example, a Poisson hurdle model 
for the Yi (with i=1, …, n) observations can be described as a mixture of 
a point mass at zero with probability pi, and a zero-truncated Poisson 
distribution with probability (1 − pi). In our case, we consider the 
observed number of cases in a county at each time period is assumed to 
follow a Poisson hurdle distribution with parameters μi and pi : Yi ∼

PoissonHurdle(μi, pi) where 

P(Yi = 0) = pi, 0 ≤ pi ≤ 1

P(Yi = yi) = (1 − pi)
μyi

i e− μi

yi!(1 − e− μi )
yi = 1, 2,⋯; i = 1,⋯, n; μi > 0.

The choice of the data model may be evaluated using a model se-
lection exercise to arrive at the “best” model among Poisson, negative 
binomial, and their zero-modified versions. 

Fig. 2. (a) Confirmed cases of Lyme disease in Virginia across all years (2001 – 2016). (b) Map of total number of confirmed Lyme cases in Virginia from 2001-2016.  

Table 1 
Summary of predictor variables.  

Variables Source Spatio-temporal scale 

Precipitation NARR* Monthly, Centroid box 
Temperature “ “ 
Relative Humidity “ “ 
East-West wind(U) “ “ 
North-South wind (V) “ “ 
Greenness index (NDVI) MODIS** “ 
Deer population index CDC*** Monthly, County/city average  

* NARR, North American Regional Reanalysis. 
** MODIS, Moderate Resolution Imaging Spectroradiometer. 
*** Centers for Disease Control . 
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3.1.2. Negative binomial hurdle models 
The negative binomial model addresses the issue of overdispersion if 

present in the data and is considered as an alternative to the Poisson 
model when the assumption of equi-dispersion (equal mean and vari-
ance) does not hold true. Suppose variable Yi is distributed as negative 
binomial, Yi ∼ NegBinHurdle(μi,α, pi), 

P(Yi = 0) = pi, 0 ≤ pi ≤ 1  

P(Yi = yi) = (1 − pi)

Γ
(

yi +
1
α

)

Γ(yi + 1).Γ
(

1
α

)

(
1

1 + αμi

)1
α
(

αμi

1 + αμi

)yi  

where α the dispersion level (α > 0), mean E (Yi) = µ and variance Var 
(Yi) = µ + α µ2. See Hilbe (2014) and Arab (2015) for more details on 
zero-modified models and their properties. 

3.2. Model Implementation 

Following Arab (2015), we used a hierarchical Bayesian framework, 
and computations were implemented in R, using the Integrated Nested 
Laplace Approximation (INLA, http://www.r-inla.org) package (Rue 
et al., 2017). The INLA method is a variational Bayes approach and is 
often used for conducting Bayesian inference as an alternative technique 
to Markov Chain Monte Carlo methods (MCMC). INLA approximates the 
posterior distribution as opposed to the MCMC methods where they 
attempt to draw from the unknown posterior distribution, and thus INLA 
is computationally efficient (Arab, 2015; Blangiardo and Cameletti, 
2015; Brown, 2015; Khana et al., 2018). In addition, INLA is efficient in 
handling skewed continuous positive data with excess zeros, and this 
also allows us for model selection criteria using Deviance Information 
Criterion (Spiegelhalter et al., 2002; Quiroz et al., 2015; Rue et al., 
2017). Therefore, we fit our models using INLA and the Matérn 
covariance function as discrete indexed Gaussian Markov Random Field 
(GMRF), based on Stochastic Partial Differential Equations, SPDE (Rue 
et al., 2017). GMRF matrix is based on a finite combination of piecewise 
linear functions in a triangular mesh in the model domain. GMRF defines 
the basis weights depending upon the Matérn parameters. The INLA 
implementation also allows accounting for spatial effect/spatial auto-
correlations, which allows spatial predictions for all missing locations 
within the spatial domain (Lindgren and Rue, 2015). We used the 
binomial link function (i.e., the logit function) and weakly informative 
Gaussian priors with 0 mean and 0.001 precision. We considered a 
Matérn covariance function to model the spatial random effects based on 
the distances between the centroid of counties and an autoregressive AR 
(1) model for the temporal effects (i.e., Year). Fig. 3 demonstrates the 
INLA/SPDE mesh that approximates the spatial fields. To avoid edge 
effect and in order to increase accuracy in calculation, the mesh is 
extended well outside of the Virginia state boundary. We modeled 

spatio-temporal patterns using different models (zero-inflated Poisson, 
Poisson hurdle, Poisson hurdle with probability, negative binomial, 
zero-inflated negative binomial, negative binomial hurdle, and negative 
binomial hurdle with probability). Full models incorporated precipita-
tion, temperature, meridional winds, zonal winds, relative humidity, 
NDVI, and deer population index as predictor variables. We identified 
the best data model using Deviance Information Criterion (DIC, Spie-
gelhalter et al., 2002) and Watanabe Akaike information criterion 
(WAIC, Quiroz et al., 2015; Vehtari et al., 2017). 

Our data (cases of confirmed Lyme diseases in Virginia from 2001- 
2016) contains about 48% zeros (Fig. 2a). With a mean of 7.36, the 
expected percentage of zero counts given a standard Poisson distribution 
would be about 0.063%. This implies that the Poisson distribution would 
not provide a reasonable fit for the data given its inability to account for 
the excess zero counts. One reason for this discrepancy is that there are a 
few counties (e.g., Loudon and Fairfax Counties) with consistently large 
numbers of confirmed Lyme cases that have a significant effect on the 
mean. Furthermore, Lyme disease is relatively rare in Virginia and it is 
imperfectly detected, which may result in excess zero counts. 

First, we extract the predictor variables on a monthly timescale, as 
mentioned in Section 2. The extracted variables include precipitation, 
temperature, meridional winds, zonal winds, relative humidity, NDVI, 
and deer population index. 

After identifying the best data model, we also conducted variable 
selection (as the best subset of predictor variables) for this model. 
Starting with the full set of predictor variables, we eliminated the var-
iables that were not statistically significant (i.e., 95% CI included zero) 
at each round until we reached the final model where all the predictor 
variables are significant. Finally, for the resulting best model, we con-
ducted statistical inference and reported the results. 

4. Results and discussion 

Table 2 summarizes the model selection results based on DIC and 
WAIC. The lower the DIC and WAIC values, the better the model is (both 
criteria assume a combination of rewarding the best fit while penalizing 
the least parsimonious model). All the models were run with a full set of 
predictor variables, and we selected the model that has the lowest DIC/ 
WAIC (see supplementary Table 3-9). Here, the negative binomial hur-
dle with regression for zero-inflation probability had the lowest DIC and 
WAIC values. In this case, the negative binomial model is also better 
than the Poisson model, which indicates the presence of overdispersion 
in data (See Fig. 2a). This result corroborates with Chen et al., 2006, 
where they found that the negative binomial performed better than the 
Poisson in modeling the spatio-temporal distributions of Lyme disease in 
the state of New York from 1990-2000. 

We chose the negative binomial hurdle with the regression model for 
the zero-inflation probability as the best model. Two other models from 
the negative binomial family, the negative binomial and the zero- 
inflated negative binomial, had similar performances (with differences 
in DIC and WAIC equal to 1.87 and 1.49, less than 10%). Among these 
three, the simplest one, negative binomial, is more tractable for infer-
ential purposes. 

In contrast to the final model (negative binomial family) selected 

Fig. 3. INLA mesh for the study region. Blue line indicates the Virginia’s state 
border, and the red dots indicate the county/city centroids. 

Table 2 
Model selection criteria results.  

Spatio-Temporal Model Type DIC WAIC 

Poisson 5586.13 5873.99 
Zero-inflated Poisson 5478.36 5726.97 
Poisson Hurdle 6178.77 6427.43 
Poisson Hurdle with Probability 5342.98 5588.97 
Negative Binomial 5040.58 5044.64 
Zero-inflated Negative Binomial 5042.45 5046.13 
Negative Binomial Hurdle 5847.52 5848.71 
Negative Binomial Hurdle with Probability 5011.77 5010.21  
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here, Arab (2015) selected the Poisson family models based on DIC for 
Lyme diseases in Illinois. It should be noted that there are several 
important differences between the current study and the one conducted 
by Arab (2015). This study includes 17 years of data, whereas Arab 
(2015) used only 5 years of data and different predictor variables. 
Further, there are differences in the prevalence of Lyme disease between 
Illinois and Virginia, and the location/size of counties. 

For our best model, among all the 72 predictor variables considered, 
only 19 variables were found to be significant. Table 3 provides a 
summary of all the monthly covariates that were significant in the 
negative binomial model. From the variable selection procedure 
(described in section 2), most models selected V-wind and relative hu-
midity, and both of these predictors were significant in May. Five of the 
monthly V-wind variables corresponding to February, April, May, 
September, and December, and the relative humidity for January, 
February, May, June, and July were selected (see supplementary Tables 
1-7 for a full list of models and variables selected). Our results corrob-
orate results from past studies which have shown that relative humidity 
is positively associated with confirmed Lyme cases (Estrada-Peña, 2002; 
Bennet et al., 2006), and wind plays an important role in transporting 
disease vectors (Harrus and Baneth, 2005). Indirectly wind affects the 
disease’s transportation via migrating birds and animals (Moen, 1976; 
Weisbord and Johnson, 1989; Smith et al., 1996; Jenkins et al., 2001; 
Brinkerhoff et al., 2011). 

Three monthly variables for June (NDVI, Relative Humidity, and 
precipitation) were important for the disease prediction. The deer 
population index was not a significant predictor in any of the models we 
considered here. This is consistent with some past studies (Ostfeld et al., 
2006; Jordan et al., 2007), however, in contrast, several past studies 
have found positive association between deer population density and 
tick populations (Wilson et al., 1990; Kitron et al., 1992; Duffy et al., 
1994; Glass et al., 1994; Kilpatrick et al., 2014). This may be due to 
biases in our deer population index as it is based on buck kill data during 
hunting seasons. Another possibility is that other mammals play a larger 
role in disease transportation in Virginia. Studies have shown that this 
disease may be transported by small mammals such as mice (Strother 
et al., 2007; Caimano et al., 2016) and Lyme disease may be more closely 
associated with smaller mammals, such as red fox and coyotes, than 
bigger mammals like deer in some areas (Levi et al., 2012). We were 
unable to test these alternative ecological predictors due to the un-
availability of data and given that our main focus is on environmental 
factors. 

Based on DIC and WAIC values, we selected the negative binomial 
hurdle with regression for the zero-inflated probability as the best 

model. This model has two components: logistic regression for the zero- 
inflation probability to predict the probability of the binary response 
variable (zero vs. non-zero response; regression coefficients as displayed 
in Table 4a), and a zero-truncated negative binomial model for the non- 
zero cases (as displayed in Table 4b). Of 72 covariates, 65 variables were 
dropped from the logistic regression model, whereas 55 variables were 
dropped from the truncated model. For the logistic regression model on 
the zero-inflation probability, the variable selection procedure selected 
V-wind, specifically fall months quite often. 

The wind components for months of fall were not significant in the 
zero-truncated model. Therefore, fall months V-wind may have different 
roles in the disease counts. Relative humidity (January, March, July, and 
September) and precipitation, especially for January, June, October, 
and November were important predictors. Precipitation and tempera-
ture were both found to be important for the disease prediction. For 
example, March temperature and four other months (January, June, 
October, and November) precipitation was found to be significant pre-
dictors (See Table 4b). These results are consistent with the past studies 
that associate Lyme disease with relative humidity (Berger et al., 2014) 
and precipitation (Subak, 2003; McCabe and Bunnell, 2004). The direct 
relationship between precipitation and Lyme disease is difficult to un-
derstand. However, there could be an indirect relationship between the 
two via vegetation (or greenness index, NDVI in this case). Precipitation 
is often positively associated with vegetation greenness (Wang et al., 
2003; Tan, 2007), and vegetation supports ticks by providing habitat 
(Estrada-Peña, 2002; Brownstein et al., 2005; Kalluri et al., 2007; 
Diuk-Wasser et al., 2010; Barrios et al., 2012). 

For the zero-truncated model, NDVI is an important predictor in 
three months (January, March, and September), and of those three, only 
one is common to both precipitation and NDVI (i.e., January). Past 
research has also shown that the herbaceous land cover is positively 
correlated with the disease incidence in Virginia (Seukep et al., 2015). 

In addition to these environmental factors included above, there 
could be many socio-economic, ecological (e.g., birds and mammals), 
and demographic (e.g., income level, population density, as in Seukep 
et al., 2015) factors that may be important for Lyme disease prediction. 
As part of an initial exploratory data analysis, we included several de-
mographic variables in our models (e.g., per capita income, education 
level, percentage of high school or college graduates, percentage of se-
nior citizens (above the age of 65), percentage of people without health 
insurance, and poverty rate), but none of these variables were found to 
be significant for predicting the disease cases (results not shown here). 
Consequently, in this paper, we limited our approach to environmental 
factors. Also, many of the socio-economic data were available on a 
decadal timescale, which was not ideal in this case given the timescale of 
our data. 

Fig. 4 displays maps for posterior predictive confirmed cases of Lyme 
from 2001 – 2016. Values are generally larger in northern Virginia 
(around Fairfax and Loudoun counties), which are the most densely 
populated counties in the state (USCB, 2017). In some years, mean 
counts are much higher in central parts (Fluvanna, Louisa, Albemarle) of 
the state (as in 2004, 2006). Also, there is an uptick in cases of the 
disease after 2007. While this could be due to the expansion of the 
disease or also due to improved surveillance efforts (Li et al., 2014; 

Table 3 
Summary of significant covariates for the log-linear regression part of the 
negative binomial model.  

Coefficient Mean SD 95% CI 

January NDVI -0.20 0.06 (-0.33, -0.08) 
March NDVI 0.21 0.08 (0.05, 0.37) 
June NDVI -0.40 0.16 (-0.71, -0.09) 
February V-wind -0.21 0.08 (-0.38, -0.05) 
April V-wind 0.30 0.05 (0.19, 0.41) 
May V-wind -0.21 0.047 (-0.30, -0.11) 
September V-wind -0.20 0.05 (-0.30, -0.09) 
December V-wind 0.47 0.09 (0.29, 0.66) 
August U-wind -0.44 0.09 (-0.61, -0.26) 
October U-wind 0.35 0.06 (0.23, 0.48) 
January Relative Humidity -0.22 0.07 (-0.35, -0.09) 
February Relative Humidity 0.13 0.06 (0.01, 0.25) 
May Relative Humidity -0.60 0.11 (-0.83, -0.38) 
June Relative Humidity 0.73 0.13 (0.46, 0.99) 
July Relative Humidity -0.34 0.12 (-0.58, -0.10) 
March Precipitation -0.13 0.04 (-0.20, -0.06) 
June Precipitation -0.18 0.04 (-0.25, -0.11) 
October Precipitation -0.14 0.03 (-0.21, -0.07) 
November Precipitation 0.12 0.04 (0.05, 0.19)  

Table 4.a 
Summary of significant covariates for the logistic regression part of the negative 
binomial hurdle model.  

Coefficient Mean SD 95% CI 

February NDVI 0.48 0.16 (0.17, 0.79) 
August V-wind 0.24 0.11 (0.03, 0.45) 
October V-wind 0.60 0.16 (0.28, 0.92) 
November V-wind 0.57 0.21 (0.16, 0.98) 
December V-wind -1.18 0.24 (-1.66, -0.72) 
August U-wind 0.67 0.22 (0.24, 1.09) 
October Precipitation 0.26 0.09 (0.09, 0.43)  
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Lantos et al., 2015; Lantos et al., 2015b). There is another region of high 
activity in western Virginia that includes Wythe, Pulaski, Montgomery, 
Carroll, and Floyd counties (as in 2008, 2009, 2010, and 2012-2016). 
This is consistent with the conclusions reported in the past studies 
(Lantos et al., 2015a; Lantos et al., 2015b, 2021). Therefore, this sug-
gests that these regions with high activity levels should be the focus for 
raising awareness campaigns and providing necessary health care 

related to the disease. Next, we analyze the wind circulation (that is 
selected by both components of the hurdle model) and inference under 
the Bayesian framework. 

Our results indicate that the Lyme cases are associated with the di-
rection of the atmospheric flows in the low levels. Years with higher 
cases of Lyme in the southwestern regions were also associated with 
stronger southwesterly winds in September (Fig. 5), for example, see 
years 2010-2012 (Figs. 4, 5). Likewise, larger counts in southwestern/ 
western parts of the state in 2006 and 2013-2016 were mostly associated 
with a stronger westerly flows in November (not shown). Based on these 
results one may hypothesize the possibility that the disease vectors may 
be advected by the background flows from the south-southwest in the 
fall. This hypothesis may be investigated in future work but it is beyond 
the scope of this study. 

In order to better understand the overall spatial structure in the data, 
we fitted spatial models for the data collapsed (aggregated) over time. 
Fig. 6 displays the posterior mean and standard deviation of the spatial 
fields for both linear and logistic regression models. Based on the 
parameterization of the hurdle model, the posterior means for the 
spatial random effects for the linear regression model (for non-zero 
counts) and the logistic regression model (for the probability of zero 
counts) complement each other (see Section 3.1.1). As expected, Lyme 
cases were larger in the northeastern region of the state in the log-linear 
model which corresponds to lower variability of zeros in these areas (see 
posterior means in Fig. 6a and c). Fig. 6b and d show posterior standard 
deviations for the spatial fields for the log-linear model and the logistic 
regression model, respectively. As discussed in Figs. 4 and 5, regions 
with larger cases were mostly associated with westerly flows in 

Table 4.b 
Summary of significant covariates for the log-linear regression part of the 
negative binomial hurdle model.  

Coefficient Mean SD 95% CI 

January NDVI -0.16 0.06 (-0.28, -0.03) 
March NDVI 0.23 0.09 (0.06, 0.39) 
September NDVI -0.27 0.10 (-0.47, -0.07) 
April V-wind 0.28 0.06 (0.16, 0.39) 
May V-wind -0.20 0.05 (-0.30, -0.11) 
September V-wind -0.19 0.05 (-0.29, -0.09) 
August U-wind -0.36 0.09 (-0.53, -0.19) 
October U-wind 0.23 0.06 (0.11, 0.35) 
March Temperature -0.39 0.11 (-0.60, -0.18) 
January Relative Humidity -0.17 0.07 (-0.30, -0.04) 
March Relative Humidity -0.33 0.11 (-0.53, -0.12) 
July Relative Humidity -0.29 0.10 (-0.49, -0.09) 
September Relative Humidity 0.35 0.08 (0.19, 0.51) 
January Precipitation -0.16 0.04 (-0.25, -0.08) 
June Precipitation -0.157 0.036 (-0.23, -0.08) 
October Precipitation -0.1558 0.038 (-0.09, -0.24) 
November Precipitation 0.09 0.04 (0.01, 0.16)  

Fig. 4. Posterior means for the spatial random effects (2001-2016).  
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November, as displayed in Fig. 7. 
Fig. 8 (a, b) shows the posterior mean and 95% credible intervals 

(2.5% and 97.5% represent the lower and upper limits, respectively) of 
the temporal random effects. This shows an overall increasing trend of 
Lyme disease in Virginia after accounting for the predictors and spatial 
variability in the disease counts for the linear model, while the trend is 
decreasing for the logistic regression (probability of zero counts) model 
as expected by the nature of the hurdle model (i.e., over time, as the 
disease is spreading and increasing, the probability of zeros shows a 
declining trend). 

5. Conclusions 

We developed a spatio-temporal hierarchical Bayesian model to 

Fig. 5. Near surface (10-m above) winds (m/s) in September from the North American Regional Reanalysis for 2001-2016.  

Fig. 6. Bayesian estimates for the spatial random effects (a) posterior mean (b) posterior standard deviation for the log-linear model in the negative binomial hurdle 
model. Similarly, (c) and (d) represent the posterior mean and posterior standard deviation for the spatial random effects for the logistic regression model in the 
negative binomial hurdle model, respectively. 

Fig. 7. Near surface (10-m above) winds (m/s) from the North American 
Regional Reanalysis for the 2001-2016 mean November climatology. 
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explain the spatio-temporal patterns of confirmed cases of Lyme disease 
in Virginia. Our model included several environmental variables such as 
precipitation, temperature, vegetation greenness, V-wind (winds along 
latitude), U-wind (winds along longitude), relative humidity, and a deer 
population index. We modeled the confirmed cases of Lyme using 
Poisson and negative binomial and their zero-modified versions (zero- 
inflated, hurdle, and hurdle with regression for zero-inflation proba-
bility). Among all the models we fitted, the negative binomial hurdle 
with regression for zero-inflation probability performed the best. Our 
model results identified several environmental variables (V-wind and 
relative humidity) as significant predictors for explaining the distribu-
tion of Lyme disease. Although the negative binomial hurdle model with 
logistic regression for the zero-inflation probability did perform better 
than the negative binomial model, it is unclear whether the marginal 
difference in performance outweighs the benefits of a simple model that 
is more tractable for inference and prediction. Our model results iden-
tified spatial “hot spots” of Lyme disease in Virginia mainly in the 
northern, western, and southwestern parts of the state. Also, we iden-
tified an overall increasing trend in cases of Lyme in Virginia after ac-
counting for spatial variation in the data. 

Our study has several limitations that may be addressed in future 
work. Mainly, we assume that the data collection and procedures remain 
consistent and follow standard protocols and that the cases are perfectly 
detected. This assumption may not be realistic and several previous 
studies have identified instances of incorrect diagnosis of the disease 
(Lantos et al., 2013, 2015b). Also, due to lack of data availability, we do 
not include individual-level data and the proportion of unconfirmed 
cases in our model which limits our ability to make inferences about the 
spatial and temporal patterns of expansion of Lyme disease to the county 
level. 
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