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A B S T R A C T   

Accurate models are important to predict how global climate change will continue to alter plant phenology and 
near-term ecological forecasts can be used to iteratively improve models and evaluate predictions that are made a 
priori. The Ecological Forecasting Initiative’s National Ecological Observatory Network (NEON) Forecasting 
Challenge, is an open challenge to the community to forecast daily greenness values, measured through digital 
images collected by the PhenoCam Network at NEON sites before the data are collected. For the first round of the 
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Community challenge 
Forests 

challenge, which is presented here, we forecasted canopy greenness throughout the spring at eight deciduous 
broadleaf sites to investigate when, where, and for what model type phenology forecast skill is highest. A total of 
192,536 predictions were submitted, representing eighteen models, including a persistence and a day of year 
mean null models. We found that overall forecast skill was highest when forecasting earlier in the greenup curve 
compared to the end, for shorter lead times, for sites that greened up earlier, and when submitting forecasts 
during times other than near budburst. The models based on day of year historical mean had the highest pre-
dictive skill across the challenge period. In this first round of the challenge, by synthesizing across forecasts, we 
started to elucidate what factors affect the predictive skill of near-term phenology forecasts.   

1. Introduction 

Plant phenology is a primary ecological indicator of climate change 
(Parmesan and Yohe, 2003) and impacts a variety of ecosystem pro-
cesses including surface roughness, albedo, canopy conductance, and 
carbon dioxide and water fluxes (Richardson et al., 2013). Realistic 
representations of plant phenology are crucial for reliable global carbon 
and water cycle predictions in climate models (Stöckli et al., 2008). In 
particular, the timing of spring phenology is advancing earlier (Piao 
et al., 2019) and influences other phenological transitions, such as 
senescence (Keenan and Richardson, 2015). Given this, we want to be 
able to anticipate future changes in phenology by assessing how well 
models perform in the near-term. 

One important plant functional type that is changing is cold- 
deciduous plants (Piao et al., 2019), which enter dormancy through 
shedding leaves in cold conditions. In the spring, they experience bud-
burst to break dormancy and then increases in total leaf area through 
expansion and unfolding (Chuine and Régnière, 2017). Budburst re-
quires both chilling during the first stage of dormancy (endodormancy) 
and warming during the second stage (ecodormancy; Chuine and 
Régnière, 2017). Since monitoring the switch from endodormancy to 
ecodormancy is challenging, we might expect that predicting canopy 
greenness around budburst is harder than other parts of the spring, but it 
is unclear if this is true. Even though we understand spring physiological 
mechanisms, there exists a large variation in the types of phenology 
models (Chuine and Régnière, 2017; Piao et al., 2019). Additionally, 
since the drivers differ between warm and cold regions (Moon et al., 
2021; Zohner et al., 2016) and warmer regions tend to budburst earlier 
than colder regions, site predictability likely differs based on greenup 
timing, but it is unclear how. One way to improve our ability to model 
phenology is through ecological forecasting. 

Near-term ecological forecasting has societal and scientific benefits. 
By creating an iterative feedback loop on learning and model 
improvement, it accelerates our scientific understanding, and by with-
holding yet-to-be-collected future data for validation (Dietze, 2017; 
Dietze et al., 2018), it makes models more robust by reducing the pos-
sibility of overfitting. Therefore, making and evaluating forecasts can 
help reveal phenology predictability and elucidate which types of 
models have the highest skill in the near-term. Additionally, unlike 
studies that predict changes to phenology in 2100 under climate change 
scenarios (e.g., Archetti et al., 2013; Delpierre et al., 2009; Keenan and 
Richardson, 2015; Lebourgeois et al., 2010; Xie et al., 2018), near-term 
forecasting allows for the rapid and iterative testing of models and hy-
potheses against new observations. Improving near-term phenology 
forecasts has benefits ranging from informing scientists of data collec-
tion times, optimizing land management activities, and improving 
weather forecasts (Morisette et al., 2009; Xue et al., 1996). Furthermore, 
since canopy greenness data can have a low latency (e.g., less than a 
day), phenology forecasts are not subject to data reporting delays, which 
are common in other forecasted ecological systems (Johansson et al., 
2019). Thus, phenology is an ideal system for executing ecological 
forecasting and testing forecasting theory. 

Previous efforts to forecast phenology have spanned spatial and 
temporal scales – from the greenup of individual species made based on 
in situ observations (Gerst et al., 2021) to predictions of land surface 

phenology using vegetation indices derived from satellite imagery (e.g., 
Neupane et al., 2022; Xu et al., 2021). Additional examples include the 
large-scale forecasting efforts by the United States National Phenology 
Network (Crimmins, 2020) and the automated species-level forecast 
system of Taylor and White (2020). Existing forecasts typically focus on 
forecasting the timing of specific phenological transition dates instead of 
daily phenological conditions. However, the underlying seasonal pro-
cesses of phenological development are typically continuous and dy-
namic, meaning that the phenological condition tomorrow is based on 
that of today. 

In addition to improving the representation of the physiological 
process, representing phenology as continuous also allows for iterative 
data assimilation approaches that update predictions continuously with 
new phenological observations (Viskari et al., 2015). By providing the 
potential to assimilate more data that is closer temporally to when is 
being forecasted, this likely cause forecasts to become more accurate as 
lead time (i.e., difference between the date forecasted and the date the 
forecast was submitted) decreases. Additionally, forecast skill should be 
higher for shorter lead times because of the influence of lead time on 
meteorological forecasts’ accuracy. Thus, there is an unmet opportunity 
to improve our understanding of phenological processes and how dy-
namic models compare to other model classifications by forecasting 
spring green-up as a continuous process. 

Unlike previous phenology forecasting efforts that occurred without 
a common community framework, an open community challenge with a 
clear set of guidelines and shared cyberinfrastructure and data allows for 
comparisons across forecast models and provides insight into the pre-
dictability of phenology outside of one specific model or team of people. 
Through providing a common pipeline to increase the ease of running 
forecasts, it also encourages more people to try forecasting, bringing 
with them different and creative perspectives. This community frame-
work should help speed up the process of model development and 
forecasting phenology in the near-term. 

In response to this need, the Ecological Forecasting Initiative’s (EFI) 
Research Coordination Network is hosting the NEON (National 
Ecological Observatory Network) Ecological Forecasting Challenge, an 
open community forecasting challenge where a design team provides 
infrastructure and guidance and teams in the ecological and related 
communities can submit forecasts of NEON data (Thomas et al., 2023a). 
In Round 1 of the Phenology Forecast Challenge in 2021, teams were 
asked to forecast daily canopy greenness at eight cold-deciduous 
broadleaf sites within NEON. We hypothesized that (H1) forecasts 
would improve as lead time decreases; (H2) the start of greenup (i.e., 
budburst) would be the hardest part of the curve to forecast; (H3) 
similarly, forecasts submitted right before budburst would have the 
lowest predictive power as they are forecasting the greenup curve; (H4) 
dynamic models that assimilate new phenology data would perform 
better than those that do not; and (H5) differences in predictability 
between sites would be explained by differences in the timing of 
greenup. The answers to these hypotheses have important ramifications 
for understanding what impacts phenology forecast skill and the matu-
rity of our community’s modeling efforts. 

K.I. Wheeler et al.                                                                                                                                                                                                                              



Agricultural and Forest Meteorology 345 (2024) 109810

3

2. Methods 

2.1. NEON phenology forecasting challenge description 

The NEON Phenology Forecasting Challenge is an open challenge 
that teams can submit to and join at any time, using multiple models if 
desired (Thomas et al., 2023a). For Round 1, teams were tasked with 
forecasting daily PhenoCam GCC at eight NEON sites throughout spring 
for 35 days into the future for each submission day. All models had at 
least one team member who participated as a co-author. The design 
team provided a target file of previous PhenoCam data for each site that 
was updated daily with new PhenoCam data. Forecasts were to be 
submitted by 6 pm ET each day with the first day of the forecast being 
the submission day (e.g., a submission on 1 February 2021 included 
forecasts for 1 February 2021–7 March 2021). A small number of teams 
from university courses were permitted to submit late forecasts provided 
no data beyond the forecast start date was used. Forecasts longer than 35 
days were filtered out in this initial analysis. Submissions had to include 
uncertainty estimates and be submitted in the Ecological Forecasting 
Initiative forecast standard (Dietze et al., 2023). 

2.2. Site selection and description 

We selected eight temperate sites within NEON (Table 1 and Fig. 1) 
that represented seven different ecoclimatic domains and that included 
deciduous broadleaf plants within view of a PhenoCam. Sites had two to 
four years of PhenoCam data prior to the start of the Challenge, but 
many sites had longer-term PhenoCams located nearby (e.g., Harvard 
Forest) that could be used in calibration. Additionally, some sites (e.g., 
Bartlett) were selected for overlap with other forecasting challenges 
(terrestrial fluxes, aquatic temperature and dissolved oxygen, tick pop-
ulations, and beetle fluxes) within the EFI NEON Ecological Forecasting 
Challenge in Round 1 (Thomas et al., 2023a). 

2.3. Phenology data: PhenoCam 

To monitor canopy greenness, we used NEON PhenoCams, which are 
digital cameras that take regular repeated images of plant canopies as 
part of the PhenoCam Network (Seyednasrollah et al., 2019). The low 
latency of PhenoCam data (less than one day), provides an opportunity 
to evaluate forecasts in real-time. NEON’s PhenoCams were installed 
following the standard PhenoCam Network deployment protocol 
(Richardson et al., 2018). Each camera (NetCam SC IR, StarDot Tech-
nologies, Buena Park, CA, USA) was configured using automated scripts 
(the PhenoCam Installation Tool) to ensure consistency in settings such 

as exposure and white (color) balance, as well as image and metadata 
acquisition and transmission. Multiple cameras are deployed at each 
NEON site; for this Challenge, the data were derived from the 
top-of-tower cameras. 

Each NEON camera is set to record an image every 15 min. Quan-
titative image analysis consists of several steps. First, an appropriate 
“region of interest” (ROI) is defined for the camera, corresponding to the 
area within each digital image for which color information will be 
extracted. Second, images are sequentially read in, and the frequency 
distribution of the pixel values (pixel value is an 8-bit digital number, or 
DN) for each color channel (red, green, and blue) is characterized for the 
ROI in each image. Third, a normalized vegetation index, the green 
chromatic coordinate (GCC), is calculated: 

GCC = GDN/(RDN +GDN +BDN), (1)  

GCC has been shown to be highly effective at suppressing variation due to 
external factors, such as scene illumination (weather and atmospheric 
effect), and maximizing the underlying phenological signal. GCC is 

Table 1 
Summary of site characteristics.  

Site Name Site (and PhenoCam) ID Latitude Longitude MAT 
(◦C) 

Number of 
Years 

Reported Dominant DB Species 

Harvard Forest, MA (HARV) NEON.D01.HARV. 
DP1.00033 

42.537 − 72.173 7.15 4 Quercus rubra 

Bartlett Experimental Forest, NH (BART) NEON.D01.BART. 
DP1.00033 

44.0639 − 71.287 6.1 4 Fagus grandifolia, Acer rubrum, Betula 
papyrifera 

Smithsonian Conservation Biology Institute, 
VA (SCBI) 

NEON.D02.SCBI. 
DP1.00033 

38.893 − 78.140 11.8 4 Liriodendron tulipifera, Juglans nigra 

Steigerwaldt Land Services, WI (STEI) NEON.D05.STEI. 
DP1.00033 

45.509 − 89.586 4.95 3 Populus tremuloides, Acer rubrum 

The University of Kansas Field Station, KS 
(UKFS) 

NEON.D06,UKFS. 
DP1.00033 

39.040 − 95.192 12.65 2 Symphoricarpos orbiculatus, Celtis occidentalis, 
Carya ovata 

Great Smoky Mountains National Park, TN 
(GRSM) 

NEON.D07.GRSM. 
DP1.00033 

35.689 − 83.502 12.65 3 Liriodendron tulipifera, Acer rubrum, Acer 
pensylvanicum 

Dead Lake, AL (DELA) NEON.D08,DELA. 
DP1.00033 

32.542 − 87.804 17.9 4 Celtis laevigata, Ligustrum sinense, Liquidambar 
styraciflua 

Lyndon B. Johnson National Grassland, TX 
(CLBJ) 

NEON.D11.CLBJ. 
DP1.00033 

33.401 − 97.570 17.65 3 Quercus marilandica, Schizachyrium scoparium 

Note: MAT refers to Mean Annual Temperature and comes from the Daymet (Thornton et al., 2017) estimation provided by PhenoCam at https://phenocam.nau.edu/. 
DB refers to deciduous broadleaf. The number of years indicates how many years before 2021 each camera started regularly collecting data. 

Fig. 1. Locations of selected sites and the National Phenology Network’s His-
torical Annual Spring Indices Anomaly for First Leaf product during the study 
year of 2021 compared to the 1991–2020 average (USA National Phenology 
Network, 2017). For full site descriptions and names see Table 1. Bartlett 
(BART), Harvard Forest (HARV), Steigerwaldt (STEI), Dead Lake (DELA), and 
University of Kansas (UKFS) likely experienced earlier than site-average 
greenup and Lyndon B. Johnson (CLBJ), Great Smokies (GRSM), and Smith-
sonian (SCBI) likely experienced later than average greenup. 
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calculated for each image, but images obtained when the solar elevation 
was less than +5◦, or images that are too bright or too dark (Klosterman 
et al., 2014; Toomey et al., 2015) are excluded. Finally, a daily value of 
GCC is calculated using the 90th quantile approach described by Son-
nentag et al. (2012) and, for the challenge, the standard deviation of the 
90th quantile value of GCC was estimated through bootstrapping. Data 
are processed and posted daily. More information about data processing 
is available in Seyednasrollah et al. (2019). 

2.4. Forecasted meteorological data: global ensemble forecast system 

While use was not required, the design team provided teams with 
site-specific meteorological forecasts extracted from National Oceanic 
and Atmospheric Administration’s Global Ensemble Forecast System 
(GEFS; Li et al., 2019; https://www.nco.ncep.noaa.gov/pmb/produ 
cts/gens/). The midnight UTC forecast was selected because it con-
tained 30 ensemble members that extended 35 days into the future; each 
ensemble member was temporally downscaled to one hour temporal 
resolution. GEFS variables include air temperature, air pressure, wind 
speed, precipitation, downwelling longwave (thermal) radiation, 
downwelling shortwave (solar) radiation, and relative humidity. Teams 
could access an S3 bucket with the GEFS forecasts online via the Amazon 
Web Services Application Programming Interface, or via the ‘neon4cast’ 
R package (Boettiger and Thomas, 2022) as part of the Challenge 
cyberinfrastructure. 

2.5. Null models 

Submitted forecasts were compared to two null models. The first is 
the persistence, or random walk, model, which assimilates new Pheno-
Cam data daily and predicts the next day’s GCC value as the current day’s 
plus normally distributed error. The second is the day of year (DOY) 
historical mean of all previous years that were available for each Phe-
noCam, which consists of the mean and standard deviation averaged 
over that PhenoCam’s previous years’ GCC values for each DOY. 

2.6. Modeling teams 

Thirteen distinct teams submitted forecasts from eighteen models, 
including the two null models (Table 2). More detailed model de-
scriptions are given in the Supplementary Materials. To assess H4, we 
classified models into distinct types, focusing specifically on two high- 
level factors: (1) whether the approach made use of time-varying 
covariates (e.g., weather forecast) and (2) whether the model was dy-
namic (prediction of GCC tomorrow is a function of GCC today). For the 
analyses, the eighteen models were thus grouped into five different 
types: DOY Mean, persistence, static (does not use covariates or the 
previous GCC state), covariate (uses covariates but not the previous 
state), and dynamic (includes previous state). While the persistence 
model is technically a dynamic model, we excluded it from the dynamic 
class for this analysis to evaluate it separately as a null model. Further 
assessing differences in model types was limited due to the large variety 
of modeling approaches employed. 

Table 2 
Summary of models.  

Team ID Approach Model Type: DOY Mean, 
Persistence, Covariate, 
Dynamic, or Static 

Covariates (not including previous GCC 

values) 
Uncertainties included (Driver, 
Initial condition, parameter, 
process, and observational) 

References 

CSP_Gwave Statistical Covariate Site level summaries of precipitation, 
temperature, and their interaction, latitude, 
and long-run greenness (from MODIS) 

Parameter, process, and 
observational 

None 

CU_Pheno Process Dynamic GDD, maximum GCC Driver and initial condition None 
DALEC_SIP Process Dynamic GDD None (Bloom and Williams, 2015;  

Chen et al., 2016; Wu et al., 
2021; Yang et al., 2016; Zeng 
et al., 2018) 

EFI_U_P Process Covariate DOY Parameter, and observational None 
Fourier Statistical Static DOY Observational None 
greenbears_gams Statistical Static DOY Parameter (Wood, 2017) 
greenbears_par Statistical Covariate DOY, historical photosynthetically active 

radiation 
Parameter (Wood, 2017) 

greenbears_stl Statistical Static DOY Parameter (Wood, 2017) 
PEG Statistical Dynamic DOY Parameter (Hyndman and Khandakar, 

2008) 
PEG_RFR ML Dynamic DOY Observational (Breiman, 2001; Pedregosa et al., 

2011) 
PEG_RFR0 ML Dynamic DOY Observational (Breiman, 2001; Pedregosa et al., 

2011) 
PEG_RFR2 ML Covariate Maximum and minimum temperature, 

radiation, and precipitation 
Driver and observational (Breiman, 2001; Pedregosa et al., 

2011) 
PhenoPhriends Process Dynamic Temperature Driver, initial condition, 

parameter, and process 
None 

Team_MODIS Statistical Covariate Growing degree days,  
MODIS greenness onset 

Driver, initial condition, 
observational 

(Neupane et al., 2022) 

GPEDM Statistical Dynamic Daily mean temperature, daily total 
precipitation 

Driver, initial condition, 
parameter, process, and 
observational 

(Munch et al., 2017) 

VT_Ph_GDD Process Covariate GDD Driver, parameter, process, and 
observational 

None 

DOY Mean Statistical DOY Mean None Initial condition  
Persistence Statistical Persistence None Initial condition and process  

Note: DOY refers to day of year, ML refers to machine learning, GCC refers to the green chromatic coordinate, GDD refers to Growing Degree Day, and MODIS refers to 
Moderate Resolution Imaging Spectroradiometer. Driver is uncertainty in model drivers, covariates, and exogenous scenarios; initial condition refers to the uncertainty 
in the initialization of state variables (GCC at time=0); parameter is uncertainty in model parameters and coefficients; process is the dynamic uncertainty in the process 
model attributable to both model misspecification and stochasticity; and observational is the uncertainty in the observations of the output variables (GCC). 
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2.7. Statistical analyses 

Analyses were limited to the period of February–June 2021 to cap-
ture the entire transition from dormant to full canopy states across all 
eight sites. We assessed each forecast’s skill based on the Continuous 
Ranked Probability Score (CRPS), which was calculated using the 
crps_sample function in the ‘scoringRules’ R package (Jordan et al., 
2019). CRPS is a model assessment metric that scores based on both 
accuracy (mean absolute error) and precision (ensemble spread), and 
thus, has the same units as the variable being scored (in this case, GCC, 
which is unitless as a ratio). Forecasts’ CRPS values and how they 
compared to the null models were available in real-time on the Chal-
lenge’s public dashboard. Forecasts were accepted every day during this 
period, though not all teams submitted forecasts each day. 

Since two of our hypotheses (H2 and H3) involved the skill of fore-
casts relative to when greenup occurred at each site, we calculated the 
start, middle, and end of spring (defined as 15 %, 50 %, and 85 % 
greenup, respectively) for each PhenoCam site using the function 
ElmoreFit in the R package ‘phenopix’ (Elmore et al., 2012; Filippa et al., 
2020). Additionally at each site and for each model, we calculated how 
many total days before each transition date the forecasted GCC values 
had a lower (i.e., better) CRPS than the DOY Mean null. To investigate 
the forecasted year greenup anomalies, we computed the average timing 
of transition dates (15 %, 50 %, and 85 %) for each site. It is important to 
note, though, that this average was done over a small sample size (two to 
four years depending on the site) and does not necessarily represent a 
robust estimate of historical greenup. Therefore, we also assessed the 
forecasted year deviations using the National Phenology Network’s 
Historical Annual Spring Indices Anomaly for First Leaf product for 2021 
(USA National Phenology Network, 2017). 

Statistical analyses focused on understanding the impacts of factors 
on forecast predictability: site, model, model type, lead time, and phe-
nodate (either of submission date or forecasted date). Lead time was 
defined as the difference between the date forecasted and the date the 
forecast was submitted. Phenodate was defined here as days relative to 
the date of 15 % greenup for each site, with the sign convention of 
negative phenodates being days before this threshold. 

Since we expect the relationship between CRPS and either lead time 
or phenodate to be nonlinear we analyzed the full set of predictions 
using Generalized Additive Models (GAMs) using the R ‘mcgv’ package 
(Wood, 2022; R Core Team, 2022; Version 4.2.2). Specifically, lead time 
and phenodate were modeled using thin plate regression splines using 
the default number of knots (n = 10). In addition to providing statistical 
tests and high-level summaries of each factor, GAMs also help to account 
for differences in model submission dates across teams by “correcting” 
CRPS for phenodate and lead time. 

Analyses started with an “overall” model that included linear terms 
for site and team and additive spline terms for lead time and either 
phenodateforecasted (H2) or phenodatesubmitted (H3). To assess H4, we 
used the model class effects (reference class = DOY Mean) in the overall 
model created with phenodatesubmitted. To assess if there was a signifi-
cant relationship between when models started submitting forecasts and 
their overall skill, we performed a linear regression of the model effect in 
the overall model created from phenodatesubmitted versus the day of the 
Challenge the model first submitted a forecast. Additionally for models 
that had higher predictive skill (lower CRPS) than the DOY Mean, we 
assessed if the CRPS values were lower because of lower uncertainties in 
the forecasts through a Welch Two-Sample t-Test. Similarly to assess 
differences in predictability between sites (H5), we used the site effects 
(reference site = Bartlett (BART)) in the overall GAM. Bartlett was used 
as the reference site because the ‘mcgv’ R package uses the first alpha-
betically as a default. To assess H5 and how overall seasonality affected 
skill, these site effects were also regressed against the dates of 15 %, 50 
%, and 85 % greenup and the forecasted year timing anomalies. 
Furthermore, to assess whether models performed better at some sites 
than others we also refit the GAM with a site-by-model interaction term, 

which was visualized as a barplot. 
In addition to the overall GAMs, to answer H1–H3 we also assessed 

the impact of model and model type on lead time and phenodate re-
sponses by fitting a series of independent GAMs for each model and 
model type. Two models’ forecasts, EFI_U_P and greenbears_stl, were 
excluded from the model-specific analyses because there were not 
enough submissions to fit the GAMs independently (Fig. S1). Attempts to 
include separate spline responses by model or model type within the 
overall GAM failed to converge so we do not provide an overall statis-
tical test on these interaction terms, but instead, focus on visualizing 
responses. 

We visualized the responses through GAM response surfaces of pre-
dicted CRPS over lead times (0–35 days) and phenodates (80 days before 
15 % greenup – 40 days after) for different sites, models, and model 
classes. When we varied phenodates, the GAM response surface repre-
sents predicted CRPS across all lead times. Similarly when we varied 
lead times, the response represents the predicted CRPS across all phe-
nodates. Using response surfaces allowed us to predict CRPS for each 
site, model, and model class across different lead times and phenodates 
even if each combination did not occur in the actual forecasts (i.e., not 
all models forecasted all dates, but we could use the fitted GAMs to 
predict what CRPS would have been). Additionally to further assess 
differences in site predictability, we regressed the maximum of the GAM 
response surface of varied phenodatesforecasted for each site against 
greenup length. 

3. Results 

3.1. Forecast submissions 

Overall, 192,536 individual predictions (forecast of GCC by one 
model on one submission date for one site and one forecasted day) were 
submitted for eighteen models from thirteen teams, including the two 
null models provided (DOY Mean and persistence). All models submitted 
a forecast for at least one day that fell within the spring greenup period 
(i.e., between 15 % and 85 % greenup) for at least one site, but the date 
of first submission and frequency varied greatly (Fig. 2), ranging from 
submitting on all days of the challenge to only submitting on one day 
(Supplementary Fig. S1). Additionally as the challenge period pro-
gressed, the average number of submissions each day increased until 
around mid-May 2021 (Fig. S2). Classifications of models varied and we 
had three, six, and seven models that were static, covariate, and dy-
namic, respectively, in addition to the null DOY Mean and persistence 
models (Table 2). 

3.2. Example set of forecasts 

To give an example of forecasts during the greenup period and how 
they differed between models, we provide an example of submitted 
forecasts for one site, Harvard Forest, submitted on one reference 
datetime, 11 May 2021, for the 35-day horizon the challenge requested 
(Fig. 3). We highlight Harvard Forest because it is well-known in the 
ecology community and finished greening up last, allowing more teams 
to forecast it. We chose 11 May 2021 as an example because it was right 
before greenup started and had the largest number of forecasts sub-
mitted. All models that submitted forecasts on this day, other than the 
persistence null model, predicted greenup would occur during the next 
35 days (Fig. 3). Forecasted greenup timing, rate, and uncertainty all 
varied between teams (Fig. 3). For example, the start of greenbear_par’s 
forecasted greenup curve was close to the observed start, but their 
forecasted greenup occurred slower than the actual greenup. Addition-
ally, DALEC_SIP forecasted too early of a start and too low post-greenup 
GCC. Furthermore, PEG_RFR forecasted post-greenup GCC correctly, but 
predicted greenup later than it occurred. Additional examples at other 
sites are available in Fig. S3. 
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3.3. H1: changes in forecasts with lead time 

When considering the effect of lead time on forecast skill, the 
persistence, dynamic, overall, and static model types all show the ex-
pected pattern of error increasing with lead time (H1), but form a 
gradient, from fastest to slowest, in the rate at which error increased 
(Fig. 4). The DOY Mean forecast error does not vary with lead time, 
which is expected as this forecast is based solely on previous years data 
and does not change with lead time. Finally, the covariate model class 
exhibits a decrease in error as lead time increases. 

In the GAMs fit to individual models CRPS values (Fig. 4c), most 
models also followed the expected pattern of increasing error with lead 
time (H1), while Team_MODIS, greenbears_par, and PEG_RFR2 show a 
similar pattern to the covariate group of a slight decrease in error with 
lead time. Fourier, PEG_RFR, and PEG_RFR0 all showed a pattern of 
error increasing to a maximum around day 20–25 before declining 

slightly, while in VT_Ph_GDD error declined slightly as lead time 
increased over the first week (similar to Team_MODIS, greenbears_par, 
and the covariate group), before switching to the expected pattern of an 
increase in error with lead time. On average, error increased fastest with 
lead time for the persistence (random walk) null model, which was also 
the worst overall performing model, suggesting that all models were 
consistently more skillful than a persistence null. That said, CU_Pheno 
and VT_Ph_GDD both had specific periods where the rate at which their 
error increased was more rapid than the persistence null. Specifically, 
CU_Pheno exhibited a rapid increase in error over the first five days 
before asymptoting over the remainder of the 35-day forecast, while 
error in VT_Ph_GDD increased more rapidly than persistence over days 
13–24. Examples of how forecasted GCC and skill of transition dates 
change with lead time are shown in Fig. S4 and S5. 

Fig. 2. The specific days that each model forecasted (a) and the days that each team submitted forecasts on (b). The period where at least one site was between 15 % 
and 85 % greenup is indicated with shading. 

Fig. 3. a) An example of forecasted greenness values (GCC) submitted by teams on 11 May 2021 for Harvard Forest. Observed GCC values are given in black points 
with standard deviations indicated with bars. Of the teams that submitted on this date (including DOY Mean), most predicted a greenup curve during this time period. 
b) PhenoCam image on 15 May 2021 (date of 15 % greenup; Milliman et al., 2019). c) PhenoCam image on 21 May 2021 (date of 85 % greenup; Milliman 
et al., 2019). 
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3.4. H2: changes in forecasts with phenodate forecasted 

Contradicting H2, forecast skill on average across all models, lead 
times, and sites was highest (CRPS lowest) when forecasting GCC on days 
prior to greenup and lowest around 85 % greenup. Specifically, forecast 
skill was at a minimum on average 14 days after 15 % of greenup (black 
line in Fig. 5) and 0.75 days before 85 % greenup. The number of days 
after 15 % greenup that predictability was the worst varied between 
sites with Steigerwaldt, Harvard, and Bartlett reaching worst predict-
ability first and Great Smokies and Lyndon B. Johnson last (Fig. 5). The 
peak magnitude of CRPS GAM response surfaces over varying pheno-
dateforecasted for each site correlated with how quick greenup occurred 
(R2 = 0.87, p-value = 0.0007; F-statistic = 40.16; degrees of freedom =
7), with the sites that greened up fastest having worse predictability. 

3.5. H3: predictability based on phenodate submitted 

In addition to the predictability being lowest when the forecasted day 
(phenodateforecasted) was around 85 % greenup (Section 3.4) and sup-
porting H3, the overall GAM showed that the predictive power was 
lowest for days when the forecasts were submitted (phenodatesubmitted) 
right before budburst (15 % greenup). The GAM response surface starts 
from a constant low CRPS during the dormant season, begins to rise 
starting about a month before greenup, peaks four days prior to 15 % 
greenup (i.e., phenodatesubmitted = 0), and declines to a new, higher, 
summer asymptote approximately three weeks after greenup (Fig. 6a). 
Across all model classes, the pattern in CRPS versus phenodatesubmitted 
follow the same qualitative pattern, with the largest difference being the 
amplitude of the peak error, which largely reflect the overall differences 
in forecast skill by model class (Fig. 6a). The timing of peak error varies 
slightly by model class with covariate peaking first (− 9 days), followed 
by static (− 6), DOY Mean (− 5), persistence (− 4) and dynamic (− 3 

Fig. 4. a) Generalized Additive Model response surfaces of Continuous Ranked Probability Score (CRPS) as a function of lead time (i.e., difference between the date 
forecasted and the date the forecast was submitted) across models and forecast start dates (black line) or separated by model type. b) Same as top but focusing on the 
change in CRPS relative to the shortest lead time (time=0)), which emphasizes changes in predictability with lead time rather than absolute skill. c) Change in CRPS 
with lead time for individual models. 

Fig. 5. a) Generalized Additive Model (GAM) response surfaces of Continuous Ranked Probability Score (CRPS) as a function of the predicted day relative to the date 
of 15 % greenup for each site based on GAM analyses shown in solid lines. The dotted vertical lines indicate the number of days after 15 % greenup that 85 % greenup 
occurred. Predictive power increased during the greenup period and for most sites peaked at or right after 85 % greenup. b) Site maximum CRPS versus greenup 
length (85 % greenup - 15 % greenup dates). Sites that greened up faster had worse predictability during greenup than sites that greened up slower. 
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days). Patterns by model are similar but with greater noise due to the 
variability in when teams first submitted forecasts and how often fore-
casts were submitted (Fig. 6b). 

3.6. H4: predictability by model and model class 

Contradicting H4, we found that the DOY Mean model class, not the 
dynamic models, overall had the highest predictive skill. Relative to the 
DOY Mean CRPS (ΔCRPS = 0), error was lowest for the covariate class 
(ΔCRPS=0.00168 ± 0.00012) followed by static (ΔCRPS=0.00245 ±
0.00011), dynamic (ΔCRPS=0.00697 ± 0.00009), and finally the 
persistence null (ΔCRPS=0.01176 ± 0.00010). Additionally in the 
overall GAM, only the model greenbears_par performed better than the 
DOY Mean null model (μ = − 0.0005434, σ = 0.0001457, t = − 3.729 p =
0.000192), while Fourier and EFI_U_P were not significantly different 
from the DOY Mean and all other models were significantly worse 
(Fig. 7). The mean standard deviation of submitted forecasts across the 
challenge period was significantly higher for the DOY Mean model than 
greenbears_par (0.00736 versus 0.00261; t = 102.9, degrees of free-
dom=35,303, p-value<2.2e− 16). We also did not find a significant 
relationship between model effect in the overall GAM and the date of 
first submission (intercept: 6.042e− 3; slope: − 1.628e− 5; R2 = 0.01; F- 
statistic: 1.1693 on 1 and 15◦ of freedom; p-value: 0.6865). When 
grouped by model class instead of model, no model class significantly 
outperformed the DOY Mean null. 

While only one of the models had higher predictive skill than DOY 
Mean across the entire Challenge period (greenbears_par), many models 
predicted GCC on the transition dates better than the DOY Mean, 
sometimes 35 days out (Fig. S6). On average, for the 15 %, 50 %, and 85 
% greenup transition dates, PEG, GPEDM, and greenbears_gams beat the 
DOY Mean model furthest out, respectively. 

3.7. H5: predictability by site 

Supporting H5, site effects (Fig. 8) exhibited a positive relationship 
with 50 % greenup DOY (slope = 8.847e− 05, standard error = 3.063e- 
05, t = 2.888, p-value = 0.0278) with an R2 of 0.58, indicating that on 
average models were better at predicting sites that leafed out earlier 
than those that leafed out later. In terms of site-to-site differences in 
model performance, within the overall GAM all sites had significantly 
lower CRPS than the reference class (Bartlett) except Steigerwaldt. 

In the GAM model that considered site ✕ model interactions, 91 out 
of 144 interaction terms (67 %) were significant (Fig. S7). Interactions 
were least common for the models greenbears_stl (0), Fourier (0), 
greenbears (1), greenbears_gams (1), EFI_U_P (1), and PhenoPhriends 
(2). At the other extreme, all site interactions were significant for the 
models Team_MODIS, PEG_RFR0, PEG_RFR, persistence null, and 
DALEC_SIP, and seven out of eight sites were significant for PEG and 
greenbears_par. 

4. Discussion 

4.1. H1: skill and lead time 

We observed that in general, and as expected, predictive skill of 
forecasts, as defined using CRPS that evaluates forecast distribution 
(rather than only the mean or median), increased as lead time decreased, 
which has been found with previous phenology forecasts (Taylor and 
White, 2020). That said, this overall pattern did not hold true for a 
couple specific cases. First, the DOY Mean null model showed no pattern 
with lead time, which is to be expected as this forecast is not updated 
based on new information and stays constant for each date regardless of 
when the forecast is created. For similar reasons teams using static 
models had, on average, the least increase in CRPS with lead time. The 
covariate model PEG_RFR2 showed the unexpected pattern of 
decreasing error with increased lead time, which was likely because the 
model’s forecasts were only submitted at the end of the forecast period 
after most sites had already completed greenup. The covariate class’s 
unexpected pattern of decreasing error with increased lead time likely 
occurred due to the models becoming overconfident at shorter lead 
times (e.g., spread decreases more rapidly than bias with short lead 
times). This would also explain the initial behavior of the VT_Ph_GDD 
model of error declining as lead time increased only for the first week. At 
longer lead times (greater than approximately a week), the model either 
reduces bias or ensemble spread with decreasing lead times. Increases in 
CRPS, and thus decreased predictive skill, with shorter lead times has 

Fig. 6. a) Change in Continuous Ranked Probability Score (CRPS) in the 
Generalized Additive Model (GAM) response surfaces compared to the first day 
in the predicted time series (i.e., phenodatesubmitted = − 80) as a function of 
phenodatesubmitted, defined as the submission date relative to the 15 % greenup 
date at each site. b) GAM predicted CRPS by model as a function of phenoda-
tesubmitted. In the overall GAM created from all forecasts, predictive error 
(CRPS), peaked four days before 15 % greenup. 

Fig. 7. Generalized Additive Model fixed effects expressing mean skill by 
model relative to the day of year (DOY) Mean null model. Models are ordered 
from highest error (top) to lowest error (bottom) and colored by model class. 
Negative values indicate the model outperformed the null across all forecasts. 
Vertical lines represent the effects for model class (red vertical line at 0 in-
dicates DOY Mean). No model class significantly outperformed the DOY Mean 
null and greenbears_par was the only team to. 
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been found elsewhere such as with forecasting streamflow totals 
(Schepen et al., 2016) and decadal hindcasts of global mean temperature 
(Smith et al., 2015). Our results emphasize that forecasters need to be 
wary of becoming overly confident with time. 

4.2. H2: predictability of different parts of greenup 

We hypothesized that the start of greenup would be the hardest part 
of the curve to forecast, but instead observed that in general, predict-
ability decreased through the greenup period. This could be due to a 
variety of reasons. Firstly, the representation of budburst in the models 
could be better than the representation of leaf expansion. Budburst is 
typically more controlled by temperature and photoperiod in cold- 
deciduous plants (Chuine et al., 2013; Zohner et al., 2016), which was 
commonly used in the forecast models. In contrast, leaf and cell elon-
gation is primarily controlled by water availability and turgor (Taiz and 
Zeiger, 2006), which was less common to include. Secondly, since the 
difference in greenness at 15 % greenup from dormancy is smaller than 
at later parts of greenup, if models are predicting greenup late the error 
on this date would be smaller but would grow over time until the 
forecast catches up with observations. Thirdly, the meteorological 
forecasts used could have been more inaccurate during later greenup 
instead of at budburst because of the impacts of vegetation properties 
leading to biases in meteorological forecasts (Xue et al., 1996). Focusing 
on model fits instead of near-term forecasts, Richardson et al. (2006) 
also found that later phenological stages are harder than budburst to 
predict. In contradiction, Klosterman et al. (2018) found that they were 
easier. Our results indicate that evaluating forecast and predictive skill 
at the end of the greenup period is as important as evaluating at 
budburst. 

4.3. H3: predictability based on when submitted 

The results support our hypothesis that in this focal year, selected 
sites, and submitted models, forecasts across all lead times submitted 
right before budburst have the lowest predictive power based on the 
selected metric of CRPS. This was expected because the 35-day fore-
casted period is long enough to typically include the full greenup curve 
in most deciduous broadleaf forests (Klosterman et al., 2018), and thus is 
harder to predict than the greenness during dormancy and peak green-
ness. Additionally, the error post-greenup was consistently higher than 
pre-greenup, which seems to be associated more with persistent biases 
across models in predicting peak summer greenness, than the potentially 
greater day-to-day variability in observations. During the summer, GCC 
gradually decreases (Elmore et al., 2012; Klosterman et al., 2014), 

resulting in a less stable target compared to winter dormancy. 

4.4. H4: skill of different model classes 

We were surprised at how challenging it was to have higher skill than 
the DOY Mean model across the Challenge period because the DOY 
Mean model did not incorporate any covariates or current conditions. 
This difficulty could be partly attributed to the used GCC index not being 
a perfect expression of phenology. Even with the PhenoCam Network 
processing (e.g., fixing the white balance; Seyednasrollah et al., 2019), 
GCC can still be affected by illumination and atmospheric conditions. 
Perhaps the DOY Mean model better accounted for these observation 
errors. The only model to have greater predictive skill, greenbears_par, 
relied on historical averages of the covariate data (DOY and photosyn-
thetically active radiation), thus mimicking the historical average nature 
of the DOY Mean model. One reason it out-performed the DOY Mean 
model could be because the forecasts had lower uncertainties (mean 
standard deviation of 0.0026 versus 0.0074). This result reinforces just 
how important a historical means null model is for near-term forecasting 
in general, and for phenological forecasting in particular. While his-
torical average models performed the best, they are likely less useful for 
predicting long-term changes to phenology as the climate warms, as they 
make the same prediction for every future year. It is also unclear, given 
one study year, how well the high performance of DOY Mean and 
greenbears_par would hold up across years that might be less “average.” 
Furthermore while most models had lower predictive skill than the DOY 
Mean model across the Challenge period, we did observe that some 
models forecasted GCC on the transition dates better than the DOY Mean 
model (Fig. S6), which is likely more important than across the entire 
Challenge period. 

Historical means are often used as a null model in predicting specific 
transition dates, such as spring budburst, with mixed results of it out-
performing other models. When comparing predictions of human- 
collected budburst timings in four species in Belgium, Fu et al. (2012) 
found that most models outperformed the historical null. However, 
many modeling studies, including those introducing a new model (e.g., 
Elmendorf et al., 2019; García et al., 2019) and model comparison 
studies (e.g., Asse et al., 2020; Melaas et al., 2016; Moon et al., 2021), do 
not include this as a null model. The difficulty in out-performing his-
torical means predictions was also found by another theme of the EFI 
Ecological Forecasting Challenge (water temperature in lakes; Thomas 
et al., 2023b). 

In contrast to H4, we found that other than the persistence model, the 
dynamic models (i.e., ones that use the previous day’s GCC to make a 
forecast) performed in general worse than the other models, indicating 

Fig. 8. a) Site effects on Continuous Ranked Probability Scores (CRPS) from the overall Generalized Additive Model ordered by date of leaf out from latest (top) to 
earliest (bottom). b) Linear regression of the site effects on CRPS from panel a versus the site’s day of year (DOY) of 50 % greenup. Overall, sites that leafed out earlier 
had higher predictability. 
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that while dynamic phenology models still have potential to serve as 
mechanistic models and improve forecasts, the dynamic models used 
here for forecasts have likely not matured enough yet. We had expected 
that the low latency of the PhenoCam GCC Data (overnight) would allow 
dynamic models to perform well because they could quickly incorporate 
the current state of the system before forecasting the next state. The 
conclusions here, however, are dependent on the specific models used in 
the forecasts as some dynamic models performed well, such as 
CU_Pheno. Furthermore, many common traditional phenology models 
(Chuine et al., 2013) could not be included because they forecast the 
timing of transition dates and not a timeseries of GCC values. These 
commonly used models, though, are rarely dynamic models so including 
them would not have improved the performance of the dynamic model 
class. 

4.5. H5: predictability differences between sites 

In support of H5, we observed that the date of 50 % greenup and 
anomalies in the dates of 50 % and 85 % greenup each explained sub-
stantial variation in site predictability with sites that greened up later 
having lower predictability. Since we found no significant relationship 
between the date of starting to submit and model skill, this is likely not 
due to a non-random influx of late submitting models being worse than 
models that started submitting forecasts earlier. It is more likely a 
combination of ecological reasons. First, previous findings suggest that 
photoperiod is more of a dominant control of spring greenup in warmer 
climates in North America where temperature is more of a dominant 
control in colder climates (Moon et al., 2021) and in tree species found 
in lower latitudes (Zohner et al., 2016), which would explain why the 
DOY Mean performs better at sites in warmer climates that experience 
greenups earlier than the colder climates. Second, we found that the 
sites that had higher peak error (Steigerwaldt, Harvard, and Bartlett; 
Fig. 5) also greened up faster and occurred later than the other sites. This 
is similar to Klosterman et al. (2018)’s finding that later springs 
greened-up faster, so it is possible that the models performed worse for 
these sites because of the faster than average greenup rates. Third, the 
National Phenology Network’s published spring anomaly indices 
(Fig. S8) also suggest that the sites we found to be the hardest to forecast 
(Bartlett, Harvard, and Steigerwaldt) all had early springs in 2021. 
Including more years and a larger number of sites in future phenology 
forecasting challenges would help in assessing across-site patterns, as it 
is likely the small sample size (eight sites) limits the statistical power of 
such analyses. Similarly, with only one year of data it is hard to 
deconvolve across-site gradients in predictability from interannual 
variability, but these results generated hypotheses that we will use to 
approach future rounds. 

4.6. Challenge evaluation 

In addition to the scientific findings of the Challenge, we also 
observed numerous social aspects of the Challenge that were successful. 
We were successful at recruiting teams to submit forecasts for this first 
round despite a lack of a “prize” (e.g., the 16,000 USD offered in 
Humphries et al., 2018) and limited prior experience across the 
phenology community in multi-team model intercomparisons. This is 
particularly noteworthy given that one of the decisions the design team 
made was for the NEON Phenology Forecasting Challenge to be based on 
forecasting greenness values at different days and not just the timing of 
transitions, which is typically emphasized in many classical phenolog-
ical modeling approaches such as growing degree day thresholds. While 
this decision led to an underrepresentation of some of these classical 
modeling approaches, it led to innovative techniques, such as machine 
learning, and facilitated collaboration between computer science/-
machine learning experts and ecologists (e.g., the PEG team models). 
Similarly, we had good participation by academic classes, which 
advanced training in ecological modeling and forecasting through 

hands-on experience. Finally, the infrastructure platform (Thomas et al., 
2023a) that provided the data files of GCC targets and GEFS meteoro-
logical forecasts, and received and displayed the forecasts, supported 
this real-time NEON Phenology Forecasting Challenge well and can 
support future challenges. Importantly, we succeeded in empowering 
many different teams of ecologists and data scientists to make genuine, 
probabilistic forecasts (i.e., forecasts before data are collected) 

While many aspects went well, there were some shortcomings to be 
improved upon in future rounds, especially aspects that would decon-
volve the results. Firstly, not all teams submitted at all dates so there was 
a lack of consistency in the submissions presented challenges for inter-
comparison. Future rounds of the Challenge are set up to accept forecast 
submissions all year long (Thomas et al., 2023a). This is particularly 
important to encourage teams to consistently submit forecasts around 
the specific phenological events of greenup and senescence. Addition-
ally, the small number of initial sites presented a challenge to under-
standing across-site patterns of predictability. To address this limitation, 
additional NEON sites have been added to the current and future rounds 
of the NEON Phenology Forecasting Challenge (increasing from eight to 
47 sites and including other plant functional types). While these short-
comings will continue to be improved, intercomparison projects like this 
one lead to more creativity and ideas, which is exciting motivation as we 
continue the Challenge. 

5. Conclusions 

Here we presented the findings from the first round of a community 
spring greenup phenology forecast challenge. We found that in general 
predictability increases as lead time decreases (in support of H1); in this 
specific year and set of sites, predictive skill decreases at the later part of 
greenup (in contradiction to H2); forecasts submitted right before bud-
burst had the lowest predictive skill (in support of H3); the DOY Mean 
null model is difficult to outperform across the entire greenup period (in 
contradiction to H4); and that sites that greened up later tended to be 
harder to predict (in support of H5). Our study emphasizes the impor-
tance of the historical means (or climatology) model as an important 
null model for ecological forecasting and improves our understanding of 
what affects the predictability of phenology. These findings should 
inform the focus of future forecasting and modeling efforts as we 
continue to investigate this important process as a broader community. 
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