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Abstract
1.	 Phenology is one of the most immediate responses to global climate change, but 

data limitations have made examining phenology patterns across greater taxo-
nomic, spatial and temporal scales challenging. One significant opportunity is lev-
eraging rapidly increasing data resources from digitized museum specimens and 
community science platforms, but this assumes reliable statistical methods are 
available to estimate phenology using presence-only data. Estimating the onset or 
offset of key events is especially difficult with incidental data, as lower data densi-
ties occur towards the tails of an abundance distribution.

2.	 The Weibull distribution has been recognized as an appropriate distribution to 
estimate phenology based on presence-only data, but Weibull-informed estima-
tors are only available for onset and offset. We describe the mathematical frame-
work for a new Weibull-parameterized estimator of phenology appropriate for 
any percentile of a distribution and make it available in an r package, phenesse. We 
use simulations and empirical data on open flower timing and first arrival of mon-
arch butterflies to quantify the accuracy of our estimator and other commonly 
used phenological estimators for 10 phenological metrics: onset, mean and offset 
dates, as well as the 1st, 5th, 10th, 50th, 90th, 95th and 99th percentile dates. 
Root mean squared errors and mean bias of the phenological estimators were 
calculated for different patterns of abundance and observation processes.

3.	 Results show a general pattern of decay in performance of estimates when mov-
ing from mean estimates towards the tails of the seasonal abundance curve, sug-
gesting that onset and offset continue to be the most difficult phenometrics to 
estimate. However, with simple phenologies and enough observations, our newly 
developed estimator can provide useful onset and offset estimates. This is espe-
cially true for the start of the season, when incidental observations may be more 
common.

4.	 Our simulation demonstrates the potential of generating accurate phenological 
estimates from presence-only data and guides the best use of estimators. The 
estimator that we developed, phenesse, is the least biased and has the lowest 
estimation error for onset estimates under most simulated and empirical condi-
tions examined, improving the robustness of these estimates for phenological  
research.

www.wileyonlinelibrary.com/journal/mee3
mailto:﻿
https://orcid.org/0000-0002-8162-5998
https://orcid.org/0000-0001-6682-1504
mailto:mbelitz@ufl.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2F2041-210X.13448&domain=pdf&date_stamp=2020-08-09


1274  |    Methods in Ecology and Evolu
on BELITZ et al.

1  | INTRODUC TION

Global climate change is disrupting the seasonal timing of life-
history events—the phenology—of numerous species world-wide 
(Parmesan, 2007). Developing accurate phenological metrics (phe-
nometrics) from presence-only data has wide utility in the biological 
sciences, especially given the rapidly increasing number of observa-
tions being reported on global biodiversity portals. Plant phenology 
is an ecologically important regulator of ecosystem processes that 
influences the seasonality of albedo, fluxes of water and nutrient 
cycling (Richardson et al., 2013). At a community level, phenology is 
important because food webs depend on the developmental timing 
of interacting species (Chuine & Régnière, 2017). The disruption of 
important ecological interactions can have negative demographic 
effects for interacting species and disrupt ecosystem functions 
through nutrient cycles (Beard, Kelsey, Leffler, & Welker, 2019).

Historically, most phenological research has used data from 
long-term ecological research projects and standardized moni-
toring programs to estimate variation in phenology through space 
or time. These programs often collect presence/absence or count 
data, allowing researchers to use a variety of robust statistical 
methods to model phenology including generalized additive mod-
els (Moussus, Julliard, & Jiguet,  2010; Schmucki et  al.,  2016) and 
extensions of occupancy models (Chambert et  al.,  2015; Socolar, 
Epanchin, Beissinger, & Tingley, 2017). However, such standardized 
data are limited in space and time. Instead, the fastest growing data 
resources usable for documenting phenology come from incidental 
or opportunistic community science platforms, for example, iNatu-
ralist, where users share and identify photographs of biodiversity 
across the globe (Barve et al., 2020). In 2019, 538,906 digital vouch-
ers of butterflies were added to iNaturalist, a 1.8-fold increase from 
2018 (as of February 2020). Additionally, initiatives to digitize natu-
ral history museum specimens have mobilized millions of historical 
occurrence records (Nelson & Ellis,  2018). Existing data resources 
will only grow as most specimen data are not yet digitized. For in-
stance, it is estimated that only 5% of arthropod specimens housed 
in North American natural history collections are both digitized 
and georeferenced (Cobb et  al.,  2019). The exponential growth of 
incidental or opportunistic biodiversity records plus scalable solu-
tions for annotating phenology (Brenskelle, Stucky, Deck, Walls, & 
Guralnick, 2019) provide novel opportunities to better understand 
past and present phenology patterns and associated drivers across 
greater spatial, temporal and taxonomic scales.

Generating accurate phenology estimates with unstructured 
community observations is challenging because sampling effort is 
unquantified, and the biases inherent to the observation process 
cannot be fully known (Kelling et al., 2019). This often translates into 

only having a series of presence records over time as an input into 
calculating phenometric estimates. Additionally, incidental data col-
lection is not repeated so phenological estimates using these data 
must be aggregated to arbitrary spatial units, potentially altering 
phenology patterns across different scales (Keyzer, Rafferty, Inouye, 
& Thomson, 2017).

The two most common metrics used with incidental data to es-
timate timing of a particular phenophase or subphase are the mean 
date of all observations within a year and the first observation date 
of an event in a year (Jones & Daehler,  2018; Ward et  al.,  2016). 
Although mean dates have consistently been found to be an accurate 
phenometric (Bertin, 2015; Miller-Rushing, Inouye, & Primack, 2008; 
Moussus et al., 2010), they may not always be the most biologically 
relevant phenometric of interest. For example, studies examining 
phenological mismatch are often interested in understanding if the 
start and end of seasonal abundance curves overlap, while the mid-
dle of seasonal abundance curve is less critical (Both, Bouwhuis, 
Lessells, & Visser, 2006; Mayor et al., 2017). Additionally, for species 
with multiple broods such as multivoltine insects, mean estimates 
may reflect a time in-between broods where no adult individuals are 
emerged. It is therefore critical that mathematical frameworks are 
developed to estimate phenometrics that more closely reflect the 
start and end of seasonal abundance curves. This is challenging since 
first and last observation dates based on incidental data are biased, 
as the first presence observation of a phenological event almost cer-
tainly occurs after the true event begins. Likewise, the true offset 
of an event likely occurs after the last observation is documented.

Recently, Pearse, Davis, Inouye, Primack, and Davies (2017) de-
veloped a statistical estimator that fits a Weibull distribution to es-
timate the onset and offset of historic and contemporary phenology 
based on sparsely sampled, presence-only, incidental observations. 
By drawing strength across many observations, not simply the earli-
est observation, Pearse et al. (2017) demonstrate that their method 
provides estimates closer to the true onset of a process than the first 
sample. Still, estimating the true onset or offset of a process may 
be more challenging than estimating a percentile of the phenology 
curve within the bounds, because it is notoriously difficult to model 
the tails of distributions as there are fewer data points to parameter-
ize the model (Pearse et al., 2017).

Our goal was to develop a Weibull-parameterized point esti-
mator that could provide accurate estimates of phenology for any 
percentile of a distribution. Here, we describe the mathematical 
framework used to develop our estimator, which we make available 
in an r package titled phenesse. Using this framework, we quantify the 
accuracy of our newly developed estimator and three other com-
monly used phenological estimators based on simulated and empiri-
cal incidental data. We use simulations to assess the accuracy of 10 
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phenometrics estimated using four estimators while varying param-
eters for the underlying seasonal abundance curves and observation 
process. We vary the seasonal abundance curve by changing the 
modality, duration and skewness of the underlying distributions that 
we use to draw our simulated observations. The observation process 
was varied by changing the number of observations used to calculate 
estimates and by changing if the observation process was random or 
skewed towards earlier observations.

We further evaluate the application of our newly developed 
estimator on two exemplar empirical incidental datasets. The first 
example compares flowering timing for two plant species, using inci-
dental records from the citizen science platform iNaturalist (http://
www.inatu​ralist.org/), and more structured data assembled from 
the National Phenology Network (NPN). The second example again 
uses iNaturalist observations, but focuses on the migratory monarch 
butterfly, in comparison to onset timing based on presence/absence 
reporting from the citizen science resource, Journey North, focused 
specifically on first sightings. This allowed us to test the phenesse 
estimator based on two dynamics fundamental to phenology, the 
development time of temperature-limited growth (common for 
plants and ectothermic animals) and also arrival timing of volant mi-
grants, which can include insects, birds or bats. Our study contrib-
utes a quantitative framework to estimate phenological events more 
accurately using presence-only observations and informs future re-
searchers on the phenological metrics and methods that can lead to 
more robust estimates.

2  | MATERIAL S AND METHODS

2.1 | Developing a phenology point estimator for 
any percentile of a distribution

Cooke (1979) constructed bias-corrected estimators of the bounds 
of random variables which were better than the extreme order sta-
tistics for many classes of random variables. We adapted this sta-
tistical framework to develop a numerical solution that calculates a 
point estimate for any percentile. The joint distribution of the most 
recent observations of an event has approximately the same Weibull 
form, regardless of the distribution from which those sightings were 
sampled (Cooke, 1980). Therefore, the Weibull distribution is useful 
to model data integrated across multiple sources that may use dif-
ferent sampling regimes.

To estimate any percentile, we estimated the maximum likelihood 
estimation (MLE) of the shape and scale parameters of the Weibull 
distribution using the fitdistrplus package (Delignette-Muller & 
Dutang, 2015). After estimating the shape and scale parameters 
of the Weibull distribution, we plotted the cumulative distribution 
function (CDF) of the parameterized Weibull distribution. We calcu-
lated the CDF of the Weibull as F (x;�, k) = 1 − e(−x∕�)

k where x is the 
observations, λ is the scale parameter and k is the shape parameter. 
We then solved for the observation date that corresponded to a CDF 
of 0.01 and 0.99 respectively to calculate approximate bounds of the 

Weibull distribution parameterized by the original observations. The 
observation date that corresponds to a CDF of 0.01 was calculated 
as � ×

(

−log (1 − 0.01)
1

k

)

 and the observation date that corresponds 
to a CDF of 0.99 was calculated as � ×

(

−log (1 − 0.99)
1

k

)

. To ensure 
a smooth CDF curve, we calculated the CDF of all values in a se-
quence with increment of 0.5 starting at the observation date that 
corresponds to a CDF of 0.01 and ending at the observation date 
that corresponds to a CDF of 0.99.

The metric here cannot estimate a true onset and offset (e.g. 
0th or 100th percentile), we instead estimate what we refer to as 
the pseudo-0th and pseudo-100th percentile. This is calculated by 
subtracting one (day) from the observation date that corresponds 
to a CDF of 0.01 and adding one (day) to the observation date that 
corresponds to a CDF of 0.99. These new observation dates were 
assigned pseudo-CDF values of −0.001 and 1.001 respectively. In a 
future release of our r package, phenesse, we expect to remove the 
0th and 100th percentile estimates, as these estimates are not based 
on the Weibull distribution but rather an arbitrary cut-off. Instead, 
users will have to determine what quantile value represents the start 
or termination of a phenophase.

The Weibull-corrected estimate (�) was calculated as

where �
⋀

original is the original estimate determined as the x-axis value 
perpendicular to the percentile of interest (y-axis) given the CDF fit 
to the original observations (Figure 1, Step 2), �

⋀

i is the estimate at it-
eration i (Figure 1, Step 4) given the CDF fit to newly sampled obser-
vations (Figure 1, Step 3) and B is the number of iterations (500 for 
estimates included in this study).

2.2 | Setting up the simulation experiments

We simulated biologically plausible seasonal abundance curves, 
where the number of individuals in a landscape varied over time to 
assess the accuracy of our estimator. We also compare our estima-
tor to three commonly used estimators: phest (Pearse et al., 2017), 
quantile and mean. By knowing the distribution of the simulated 
taxa, we could determine how well our estimates compared to 
benchmark values.

We evaluated the effectiveness of our estimator under differ-
ent classes of seasonal abundance distributions. The first shape 
was a normal, unimodal distribution and could represent a variety 
of biological processes, for example, flowering of plants, arrival of 
migratory birds. The second shape was an asymmetric bimodal dis-
tribution, where the second peak in the distribution was larger than 
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the first (Figure  2). Skewed bimodal seasonal abundance distribu-
tions could represent emergence of bivoltine insect species whose 
second flight has a larger abundance than the first.

For each seasonal abundance curve, we manipulated the length of 
the seasonal abundance curves by changing the standard deviations (SD). 
All unimodal distributions had a mean of 200, representing the same day 

F I G U R E  1   Workflow for developing the Weibull-parameterized point estimator. First, the cumulative distribution function (CDF) of the 
Weibull distribution is plotted, after being parameterized by the original observation points (Step 1). Next, the observation date relating to 
the original percentile of interest (�

⋀

original; 90th in this example) is determined by calculating the observation date that is perpendicular to 
the percentile of interest (Step 2). To calculate bias, n number of uniform random numbers from a uniform distribution between 0 and 1 are 
generated, where n is the number of original observation dates. New observation dates are perpendicular to the horizontal lines determined 
by the n uniform numbers (Step 3). These new observation dates are used to calculate a new CDF and estimate the percentile of interest 
(Step 4). Steps 3 and 4 are iterated i times to generate a bias value which is subtracted from the �

⋀

original to calculate the Weibull-corrected 
estimate (�). In the figure above, black dots represent the original observation points, and the black-dashed lines show the �

⋀

original. Blue dots 
and dashed lines represent new observation dates generated by uniform resampling

F I G U R E  2   Simulated seasonal 
abundance curves. The unimodal 
distribution with a standard deviation 
(SD) of 10 has a phenology curve that 
lasts 75 days. The unimodal distribution 
with a SD of 20 lasts 159 days, and the 
unimodal distribution with a SD of 40 
lasts 325 days. The difference between 
the offset and onset date in the bimodal 
distribution with a SD of 10 is 144 days. In 
the bimodal distribution with a SD of 20, 
the phenology curve lasts 218 days
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of peak abundance, and three different SD: 10, 20 and 40. The bimodal 
distributions had two peaks with the respective means of 150 and 220, 
with two thirds of the abundance occurring in the second peak. We did 
not model a bimodal distribution with a standard deviation of 40, because 
the two peaks overlapped such that the distribution formed a single peak 
with a large standard deviation. We examined the effect of observation 
skewness by running all our simulations under two sampling scenarios. 
The first assumed random sampling, where the probability of observing 
an individual was the same across the entire phenophase. The second 
assumed a positive skewed scenario, where more observers are capturing 
incidental reports at the beginning of the season rather than the end. 
Here we set weights for obtaining observations in the 10th percentile at 
0.6, between the 10th percentile and the mean at 0.3 and after the mean 
at 0.1. These weights reflect potential skewness that may be present in 
incidental data. For instance, iNaturalist observation densities often peak 
in spring especially in relation to events such as the City Nature Challenge. 
For each unique modality, standard distribution and sampling combina-
tion, we randomly selected 10, 20 or 50 individuals without replacement 
using the sample function in r to generate the ‘incidental observations’ 
used to estimate a suite of phenometrics. We conducted 100 simulations 
for each unique combination of simulation parameters (Table 1).

2.3 | Analysing the accuracy and bias of 
phenological estimators on simulated data

We evaluated the accuracy of our newly developed estimator, phe-
nesse, by comparing estimated values to the benchmark values gen-
erated by the simulations. For phenometrics estimating the start 
(onset) and end (offset) processes, we compared our estimates to 
those generated by the r package phest. Phest offers an analytical 

solution to calculate a Weibull-informed estimate of the limits of a 
phenology curve but can only calculate the bounds of a distribution 
(Pearse et  al.,  2017). Therefore, we only tested the accuracy of the 
phest estimator for the start (onset) and end (offset) processes. We 
also compared our estimates to the accuracy of the default quantile 
algorithm from the r stats package for the pseudo-0th, 1st, 5th, 10th, 
50th, 90th, 95th, 99th and pseudo-100th percentiles of a process, 
where the pseudo-0th and pseudo-100th percentiles represent the 
estimated onset and offset processes respectively. Quantile estimates 
are commonly used to approximate a phenometric near a tail of the 
distribution (Brooks et al., 2017; Jonzen, 2006). Finally, we assessed 
the accuracy of a mean phenometric for each simulation experiment 
by comparing mean estimates to benchmark mean values.

For each simulation experiment, we calculated the root mean 
squared error (RMSE) and mean bias of the estimates. RMSE is cal-
culated as:

where P is the estimation of a phenometric and O is the observed 
benchmark value of the corresponding phenometric. Bias metrics can 
be useful in determining if an estimator consistently underestimates or 
overestimates a benchmark value. Mean bias was calculated as

2.4 | Analysing the accuracy and bias of 
phenological estimators on empirical data

We further evaluated the application of our phenesse estimator and 
the other estimators using empirical data. We did so by comparing 
estimated values generated using incidental data to benchmark val-
ues generated using more structured community science data. We 
analysed the accuracy of estimating open flower phenology for 
eastern redbud Cercis canadensis and common milkweed Asclepias 
syriaca, and also estimated the first arrival date of migrating monarch 
butterflies Danaus plexippus.

Incidental plant observations recorded on iNaturalist during the 
year 2019 of redbud and milkweed were downloaded from GBIF 
(2020a, 2020b). We also downloaded open flower status and inten-
sity data of redbud and milkweed for 2019 from the NPN. These 
data are collected by amateur and professional scientists and in-
clude records of the presence or absence of open flowers, taken 
repeatedly at the same site throughout a year. We generated 30-km 
hexagonal grids across the United States and counted the number 
of iNaturalist and NPN records for each species found in each grid. 
For each species, grid cells were filtered to those with at least 100 
NPN records and 10 iNaturalist observations. iNaturalist records in 
these cells were scored for the presence or absence of open flowers 
using the software tool ImageAnt (https://gitlab.com/stuck​yb/imag-
eant). Considering only records with open flowers, sufficient data 
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Mean Bias =
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TA B L E  1   Parameters used in the simulation experiments

Parameter Range of values Description

Standard 
distribution

10, 20, 40 The standard distribution 
of the seasonal abundance 
curve. Increasing the standard 
distribution had the biological 
effect of increasing the length 
of the phenology period

Observations 10, 20, 50 The number of observations 
used to generate our 
phenology estimate

Modality Symmetrical 
unimodal or 
skewed bimodal

The shape of the seasonal 
abundance curve

Sample 
skewness

Random or 
positive skewed

Random sampling assumed 
the probability of observing 
an individual to be the same 
across the entire phenophase. 
Positive skewed sampling 
assumes higher probability of 
observing an individual earlier 
in the season

https://gitlab.com/stuckyb/imageant
https://gitlab.com/stuckyb/imageant
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were available for redbud in two cells (one each in New York and 
Indiana), and milkweed in one cell in Minnesota. Phenometrics were 
estimated from these incidental data using quantile, phenesse, phest 
and mean estimators.

We used generalized additive models (GAMs) to generate 
benchmark phenometrics using the NPN presence/absence data 
at our three grid cells. We fit the GAMs using the r package mgcv 
(Wood, 2011) to a binomial distribution and specified our smooth 
terms to be cyclic cubic regression splines; day of year was the pre-
dictor variable and presence of open flower was the response vari-
able. Benchmark phenometrics were estimated by extracting values 
from our predicted GAM models (detailed methods in Supporting 
Information) for comparison to estimators using incidental iNatu-
ralist records.

Incidental monarch butterfly observations recorded on iNat-
uralist during the year 2018 were downloaded from GBIF (2019). 
Our benchmark data were collected by Journey North community 
scientists who report the first sighting each spring of monarch but-
terflies migrating from Mexico into the United States and Canada 
(Howard & Davis, 2009). We restricted our study area to only in-
clude monarch records collected between the longitudinal degrees 
−94 to −68 and the latitudinal degrees 36 to 42 to ensure docu-
mented butterflies migrated. Records within this area were anno-
tated to verify the presence of an adult butterfly. We generated 
30-km hexagonal grid cells across the study area. Grid cells were 
considered suitable for analysis if there were at least two Journey 
North records and 10 iNaturalist observations of adult monarchs, 
with at least one Journey north record prior to any iNaturalist 
observation. In total, 40 cells were kept for analysis. In each cell, 
the benchmark value was the earliest day of year of the Journey 
North records, and the estimated value was the onset estimate of 
the quantile, phenesse and phest estimators applied to iNaturalist 

records. Onset was the only comparable phenometric using the 
Journey North data, as these data focused on the first monarch ob-
served in a season. RMSE and mean bias of the estimates compared 
to the benchmark values were calculated for both the monarch and 
open flower examples.

2.5 | Code development

All functions and analyses were developed in r version 3.5.1  
(R Core Team, 2018). Simulation scripts relied on the tidyverse pack-
ages (Wickham et al., 2019) and truncnorm (Mersmann, Trautmann, 
Steuer, & Bornkamp,  2018). Figures used the additional packages 
cowplot (Wilke, 2018) and latex2exp (Meschiari, 2015). The statisti-
cal estimator developed and introduced in this paper is available in 
the r package phenesse (Belitz, 2020a).

3  | RESULTS

3.1 | Accuracy and bias of phenological estimates of 
onset and offset

3.1.1 | Simulation study

When estimating onset phenology under the random sampling 
scenario, the estimates from our r package, phenesse, always pro-
duced more accurate estimates (lower RMSE) than estimates 
produced using the r package phest, which itself was more ac-
curate than the quantile estimator (Figures 3a and 4a). Phenesse 
estimates of offset were also more accurate when the seasonal 
abundance curve was bimodal (Figure 4), but phenesse and phest 

F I G U R E  3   Root mean-squared error 
(RMSE) of the estimates of benchmark 
phenometric values in relation to 
different simulation scenarios using 20 
observations selected from the unimodal 
seasonal abundance curves for random (a) 
and skewed (b) sampling regimes
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generated estimates that were similar in accuracy for offset 
when the seasonal abundance curve was unimodal (Figure  3). 
Onset estimates generated under the skewed sampling scenario 
had lower RMSE than estimates generated under the random 
sampling scenario (Figure  3), except when the seasonal abun-
dance curve was shorter and bimodal (Figure  4b). Conversely, 
offset estimates generated under the skewed sampling scenario 
had a higher RMSE than estimates generated under the random 
sampling scenario (Figures  3 and 4). Generally, an increase in 
the length of the phenological period (increase in SD) decreased 
the accuracy of onset and offset estimates for all estimators 
(Figure S1). Across all simulations, neither onset nor offset was 
ever the most accurate phenological metric, regardless of the pa-
rameters used to set up the simulation experiment or the estima-
tor used (Figures S1 and S2).

The mean bias calculations revealed that for the unimodal sea-
sonal abundance curves, in general, the three estimators all over-
estimated the benchmark onset value; that is, they predicted later 
than the actual onset and underestimated the benchmark offset 
value (Figure 5). For the bimodal seasonal abundance curve, esti-
mates calculated by phest and the quantile estimator were similar 
in direction of bias to unimodal estimates. However, phenesse es-
timates underestimated the onset values except when observa-
tions were selected from the overlapping (20 SD) bimodal seasonal 
abundance curve and sampling was random (Figure 6). Across all 
simulation experiments, estimates of onset and offset using phe-
nesse generally had lower bias than estimates calculated using 
phest or the quantile method (Figures S3 and S4). The exception to 
this result was when observations are selected from the non-over-
lapping (10 SD) bimodal seasonal abundance curve and sampling 
was skewed (Figure 6b).

3.1.2 | Empirical study

Compared to other estimators, phenesse produced the most ac-
curate estimates for both the onset of open flowers (Figure 7a) 
and the arrival of the first monarch butterfly (Figure 7c) based 
on comparisons to benchmark observations. Phenesse esti-
mates also had the lowest mean bias in both cases (Figure 7b,d). 
The difference between the estimated arrival of the first mon-
arch butterfly and the benchmark arrival date decreased as 
the number of iNaturalist observations used to generate the 
estimate increased, with phenesse showing the least sensitiv-
ity to sample size (Figure S5). Estimates of the termination of 
flowering (offset) were most accurate and least biased using 
the phest estimator (Figure 7a,b). All estimators generally un-
derestimated the date of the termination of flowering given our 
benchmark value.

3.2 | Accuracy and bias of phenological 
estimates of the 1st to 99th percentile phenometrics

3.2.1 | Simulation study

For the estimates generated using observations from the uni-
modal seasonal abundance curves and random sampling scenario, 
the mean estimate had the lowest RMSE (Figure  3a) and bias 
(Figure 5a). Under the random sampling scenario, RMSE showed 
a pattern of decay (Figure  3a; Figure  S1a) and bias increased as 
estimates moved farther from the mean (Figure  4a; Figure  S3a). 
Under the skewed sampling scenario, RMSE and bias were low-
est with quantile estimates of the 1st, 5th and 10th percentiles 

F I G U R E  4   Root mean-squared error 
(RMSE) of the estimates of benchmark 
phenometric values in relation to 
different simulation scenarios using 20 
observations selected from the bimodal 
seasonal abundance curves for random (a) 
and skewed (b) sampling regimes
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F I G U R E  5   Mean bias of the estimates for simulation scenarios using 20 observations selected from the unimodal seasonal abundance 
curves for random (a) and skewed (b) sampling regimes. Negative bias values occur when the estimate is greater than the benchmark value

F I G U R E  6   Mean bias of the estimates 
for simulation scenarios using 20 
observations selected from the bimodal 
seasonal abundance curves for random 
(a) and skewed (b) sampling regimes. 
Negative bias values occur when the 
estimate is greater than the benchmark 
value



     |  1281Methods in Ecology and Evolu
onBELITZ et al.

and increased as the percentile of interest approached offset 
values (Figures 3b and 5b). The bias analyses showed that under 
the skewed sampling scenario, the estimators generally under-
estimated all percentiles except onset (Figure  5b). Under most 
unimodal simulation scenarios, the 50th percentile estimates 
calculated using phenesse were more accurate than 50th percen-
tile estimates using the quantile estimator (Figure S1). Although, 
phenesse estimates were generally more accurate in estimating 
the 90th, 95th and 99th percentiles of a unimodal seasonal abun-
dance curve, quantile estimates had lower RMSE and bias than the 
phenesse estimator for the 1st, 5th and 10th phenological metrics 
(Figures S1 and S3).

Results for estimates generated using the bimodal seasonal 
abundance curves were different from the unimodal results. 
Overall, the quantile estimator had lower RMSE and bias than 
phenesse (Figures  S2 and S4). The quantile estimator especially 
outperformed phenesse under the skewed sampling scenario and 
when estimating the 1st, 5th, 10th and 50th percentiles (Figure 4). 
Mean estimates were the most accurate phenometric when ob-
servations were generated under the random sampling scenario 

from the longer, overlapping, bimodal seasonal abundance curve 
(Figure 4a). Although mean estimates under the random sampling 
scenario were less accurate than the 90th percentile estimates 
when observations were from the shorter bimodal seasonal abun-
dance curve, mean estimates always provided unbiased estimates, 
with bias never being greater than one under the random sam-
pling scenario (Figure 6a; Figure S4a). However, under the skewed 
sampling scenario, mean estimates were never the most accurate 
phenometric and always were biased by underestimating the 
benchmark mean value (Figure 6b).

3.2.2 | Empirical study

Our empirical results were similar to our simulation results with 
the RMSE and bias increasing towards the bounds (Figure  7a,b). 
Estimates generated using phenesse had lower RMSE than estimates 
using the quantile estimator except for the 5th and 10th percentiles. 
Across all percentiles, phenesse generated estimates that were less 
biased than the quantile estimator.

F I G U R E  7   Root mean-squared error (RMSE; panel a and c) and mean bias of empirical benchmark phenometric values (panel b and d) 
compared to estimated phenometric values using empirical incidental data
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4  | DISCUSSION

Researchers are increasingly using incidental data to estimate 
phenological metrics, in part due to exponential growth of digi-
tized museum specimens and observers uploading their pho-
tographs on platforms like iNaturalist. These platforms, now 
containing tens of millions of imaged and identified organisms, 
can be leveraged to document phenological signals (Taylor & 
Guralnick,  2019), and provide a unique opportunity to answer 
questions across greater spatial and taxonomic scales (Barve 
et  al.,  2020). Additionally, more than 390  million specimens of 
preserved plants reside in herbaria across the world (Thiers, 2019) 
and more than 300  million arthropod specimens are housed in 
North American natural history collections (Cobb et  al.,  2019). 
The increasing availability of data spanning three centuries for 
both plants and animals promises to allow researchers a better 
understanding of the tempo and mode of seasonal changes, but 
only if the statistical methods used in the analyses are robust 
and account for underlying biases. A critical question is whether 
the observation process and methods used to control bias in that 
process can approximate the true biological signal. Simulated 
data, where the seasonal abundance curves are known, are an 
invaluable tool to assess the efficiency of phenological estimators 
(Moussus et al., 2010). Using this approach, we demonstrate that 
phenometric accuracy is context-dependent, and under certain 
scenarios, sparsely sampled presence-only data can approximate 
the benchmark phenology signal. However, our results also serve 
as another cautionary tale that estimating certain phenometrics 
can be challenging (Miller-Rushing et al.,  2008), perhaps espe-
cially so when using incidental data.

Our simulations indicate that the mean estimator generated 
the most accurate and unbiased estimates from observations 
drawn from unimodal seasonal abundance curves under the ran-
dom sampling scenario. Mean date has consistently been found 
to be an accurate phenometric in other contexts (Bertin, 2015), 
and our example using open flower phenology also confirmed 
mean date to be an accurate phenometric. However, in many 
cases, the middle of the season is not the time of the great-
est biological meaning, and it is rather the tails of the seasonal 
abundance curves that are most essential. In mismatch studies 
between interacting species, measuring the overlap of the begin-
ning of two (or more) seasonal abundance curves may be critical 
to understanding potential consequences of phenological shifts. 
For example, if migratory birds fail to breed at a time of high 
caterpillar availability, populations may experience large declines 
(Both et al., 2006). Although the accuracy and bias of phenologi-
cal estimators showed a general pattern of decay in performance 
moving from mean estimates to the tails, phenesse improves 
onset estimates compared to previous methods. Accurate onset 
estimates may be possible given enough observations and when 
the length of the phenophase or biological process is short. 
Additionally, the 5th and 10th quantile estimates performed 
well across most scenarios and provides another phenometric 

that can be used to approximate early periods of a seasonal 
phenology.

If focus is on early or late events, the possibility of biased 
sampling may improve metrics when in the same direction of 
the bias. In contrast, seasonal sampling bias reduces the effec-
tiveness of mean observations, usually the metric that is the 
most robust. In our open flower example, we did find onset to 
be more accurate than offset and the 5th and 10th percentiles 
were less biased than the mean estimator, suggesting that ob-
servations of open flowers are skewed early on iNaturalist for 
redbud and milkweed. Our results confirm that observation 
biases in incidental data can influence the accuracy of pheno-
logical estimators and that it is critical to understand the un-
derlying observation process as much as possible and use the 
best metric given that skew. When sampling is skewed early, 
then detecting onset is more tractable, but offset is likely to be 
inaccurate.

The ultimate utility of phenesse is in broad-scale assessment 
of phenology pattern and process. Researchers are not typically 
interested in phenometic estimates in just one limited area, but 
rather understanding phenology across species, space and time. 
When using incidental or opportunistic records, this often in-
volves spatial stratification using a gridding approach, and making 
estimates across those many grid cells. In most cases, the shape 
of seasonal abundance curves is not known a priori and unsur-
prisingly, estimators often do not perform well in cases where 
the underlying abundance curve is a skewed bimodal distribution. 
Even in such cases, useful estimates of phenology can still be gen-
erated with certain phenometrics and estimators. While more ob-
servations help reduce bias and error, even as few as 10 records 
generate relatively small error and bias in some cases. Our mon-
arch arrival example suggests that phenesse may be especially 
useful when data are limited as its accuracy is least sensitive to 
sample size.

Estimators such as phenesse may best be used in conjunction 
with other approaches that reduce bias in estimates. In principle, 
if a species-region combination is known to not have a unimodal 
phenology, such priors could be used in a Bayesian framework to 
inform models and improve estimates (Chevillot et al., 2017). Due 
to the autocorrelation expected in phenology across grid cells, 
spatial autoregression models could also be developed to model 
autocorrelated data based on neighbourhood relationships (Ver 
Hoef, Peterson, Hooten, Hanks, & Fortin,  2018). Weight matri-
ces used to develop the models could also include ecological and 
sampling covariates that are used to improve estimates in sparsely 
sampled areas and produce spatially smoothed results. Phenesse 
itself can directly inform such spatial or temporal weighting ap-
proaches. A critical part of our development of scientifically rigor-
ous phenology methods is code to calculate confidence intervals 
for all the estimators used in this study. Calculated confidence in-
tervals could be included as a covariate in further statistical analy-
ses to weight additional regressions where estimates have smaller 
confidence intervals.
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A disadvantage of the approach we developed is the compu-
tational speed of phenesse. Our solution to calculate a Weibull-
parameterized estimate was a numerical, iterative approach. 
Therefore, the Weibull-parameterized estimates produced by phe-
nesse are computationally more expensive than functions that have 
analytical solutions. This is especially true for confidence intervals 
given that they are calculated using nonparametric bootstrapping. 
We recommend using parallel computing techniques when using 
the weib_percentile_ci function in the package phenesse.

5  | CONCLUSIONS

We demonstrate the potential of producing more accurate pheno-
logical estimates from presence-only reporting and provide the first 
simulation results that can guide the best use of those estimators 
based on study-specific circumstances. Furthermore, our empiri-
cal examples using flowering phenology and arrival of a migratory 
butterfly demonstrate the utility of presence-only estimators using 
real-world data. Our Weibull-parameterized estimator improves ac-
curacy of onset estimates and offers a wider array of phenometrics 
than previously available when using a Weibull distribution. Of equal 
importance, phenesse allows calculation of confidence intervals to 
provide a basis for understanding the relative precision and strength 
of estimated phenometrics.

Our results show that phenesse helps improve prediction of 
onset in cases where researchers are restricted to presence-only 
data. However, this improvement is context-dependent, as there is 
often a significant amount of bias and error depending on the shape 
of the underlying seasonal abundance curve and potential skew in 
observations. Additionally, RMSE and bias calculations are expected 
to perform well when observations are sampled from normal distri-
butions. Our simulation study may oversimplify real-world phenol-
ogy curves, inflating estimator performance. However, the results 
of our empirical examples were consistent with the results of our 
simulations, mitigating these concerns.

When the underlying seasonal abundance curve is known, these 
results can guide selection of the most appropriate estimators and 
phenometrics. Researchers should consider both the underlying curve 
and potential skew in observations to determine the most robust met-
ric for analysis. In studies looking to document changes in phenology 
of a species over time when little or nothing is known about that un-
derlying curve, mean estimates may provide the most robust results. 
Box-Cox (Sakia,  1992) and other transformations offer additional 
methods that could address skew in variables. Some research topics 
such as studies examining phenological mismatch or changes in the  
total duration of a phenophase may necessitate the estimation of onset 
or offset values. Developing methods to generate robust estimates  
towards the tails of the seasonal abundance curve will be important to 
fully leveraging presence-only data in phenological research.

Phenological estimates using incidental data will always be 
hindered by the unknown variance and biases in the observation 
process. Repeated, structured surveys can provide more accurate 

estimates by gathering information on absences, relative abundance 
or survey effort and using informed knowledge to better sample 
across known seasonal abundance. Unfortunately, these standard-
ized surveys are limited to select taxonomic groups over limited 
spatial extents and time-scales. While our study quantifies the ac-
curacy and bias of different estimators and phenometrics, continued 
research is needed to further develop statistical methodologies to 
leverage the strengths of different data sources into more unitary 
frameworks for estimating phenologies.
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